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Abstract—The rapid development of remote sensing sensors
makes the acquisition, analysis, and application of hyperspectral
images (HSIs) more and more extensive. However, the limited
sample sets, high-dimensional features, highly correlated bands,
and mixing spectral information make the classification of HSIs
a great challenge. In this article, an unsupervised multiscale and
diverse feature learning (UMsDFL) method is proposed for HSI
classification, which deeply considers the spatial-spectral features
via convolutional neural networks (CNNs). Specifically, after
employing the simple noniterative clustering (SNIC) algorithm
with the heuristic calculation of superpixel size, the HSIs are
segmented into superpixels for feature learning. The unsupervised
network is designed with the convolutional encoder and decoder,
the additional clustering branch, and the multilayer feature
fusion to enhance the distinguishability of feature learning and
the reusability of feature maps. Then, the spatial relationships
and object attributes in large- and small-scale contexts are
learned collaboratively through the unsupervised network to uti-
lize the complementary multiscale characteristics. Moreover, the
diverse features of hyperspectral information and nonsubsampled
contourlet transform (NSCT) textures are learned simultaneously
via the unsupervised network to alleviate the insufficiency of
geometric representation. Finally, the random forest (RF) is
adopted as the comprehensive classifier for land cover mapping
based on the UMsDFL, and superpixel regularization is adopted
to optimize the classification results. A series of experiments are
performed on three real-world HSI datasets to demonstrate the
effectiveness of our UMsDFL approach. The experimental results
show that the proposed UMsDFL can achieve the overall accuracy
of 79.23%, 96.49%, and 77.26% for Houston, Pavia, and Dioni
datasets, respectively, when there are only five samples per class
for training.

Index Terms— Convolutional neural network (CNN), feature
fusion, hyperspectral image (HSI), superpixel segmentation,
unsupervised feature learning.
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I. INTRODUCTION

ITH the rapid development of remote sensing observa-
Wtion technology, the acquisition, analysis, and appli-
cation of hyperspectral images (HSIs) have become more
and more extensive. Many characteristics of ground objects
hidden in the narrow spectral ranges of HSIs are gradually
being discovered. In contrast to the multispectral images,
the HSIs can obtain abundant information on hundreds of
continuous spectral bands to enhance the ability of feature
extraction and object recognition [1]. Hyperspectral remote
sensing plays an important role in the fields of land use and
land cover (LULC) classification, target detection, agricultural
monitoring, mineral mapping, environmental management, and
national defense [2]. However, the limited sample sets, high-
dimensional features, highly correlated bands, and mixing
spectral information make the HSI classification a great
challenge.

Up until now, diverse kinds of methods for HSI feature
extraction and land cover classification have been developed.
Early pixel-based methods use spectral information and simple
features for recognition with classifiers such as K-nearest
neighbor (KNN) [3], extreme learning machine (ELM) [4], and
support vector machine (SVM) [5]. Later, methods based on
graph embedding [6], sparse representation [7], and low-rank
representation [8] are proposed to enhance the hyperspectral
discriminative abilities. However, there exist the phenomena
of similar objects with different spectra and different objects
with similar spectra, and thus, it is difficult to distinguish
confusing objects only utilizing the spectral information.
Hence, spatial-spectral methods are developed to combine
the spectral values and spatial structure to improve the per-
formance. In terms of spatial processing units, methods of
graph construction [9], morphological segmentation [10], and
superpixel segmentation [11] are employed to divide the
images into meaningful patches for the subsequent analysis.
In terms of spatial contexts, methods of the Markov random
field (MRF) [12], the morphological operation, and the texture
extraction are widely adopted to integrate the adjacent pixel
information. Specifically, morphological methods measure the
shape features in HSIs through definition and iterative cal-
culation of structural elements, such as the morphological
profiles (MPs) [13], attribute profiles (APs) [14], and invariant
APs [15]. Textural methods of Gabor [16], wavelet [17], and
contourlet [18] transform measure the spatial relationships and
changing patterns among adjacent pixels through contextual

1558-0644 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on April 11,2022 at 08:12:44 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0003-2038-0349
https://orcid.org/0000-0002-4056-7787
https://orcid.org/0000-0001-5822-8233
https://orcid.org/0000-0001-9742-5037

5524617

statistical functions. However, the aforementioned methods
using handcrafted features rely on HSI content and domain
knowledge, and lack adaptive parameter learning and flexible
deep feature extraction.

To address this defect, deep learning (DL) methods have
been extensively studied and employed for the HSI clas-
sification, such as convolutional neural networks (CNNs)
[19]-[22], recurrent neural networks (RNNs) [23]-[25],
stacked autoencoders (SAEs) [26]-[28], graph convolutional
networks (GCNs) [29]-[31], and generative adversarial net-
works (GANSs) [32]-[35]. DL methods can automatically learn
the deep features in HSIs from concrete to abstract through
the network layer by layer, thereby enhancing the semantic
expression. Among them, CNN methods are the most widely
used, due to their intrinsic feature learning ability of convo-
lIution and the aggregation of feature maps. Yu et al. [36]
improved the parameter optimization in CNN and applied it
to HSI classification, alleviating the problems of highly cor-
related bands and insufficient training samples. Furthermore,
Mei et al. [37] proposed an unsupervised spatial-spectral fea-
ture learning method using 3-D convolutional autoencoder
and achieved better classification accuracy than other super-
vised algorithms. In order to promote the sample selec-
tion, Hu et al. [38] introduced the active learning strategy
to construct a valuable sample set for CNN training and
boost the feature extraction. For combining the advantages
of different DL models, Yue et al. [39] merged the spectral
and spatial features obtained via SAE and CNN, respectively,
and employed spatial pyramid pooling to accept inputs on
inconsistent scales. Similarly, Hao et al. [40] adopted stacked
denoising autoencoder and CNN to encode the features sep-
arately and fused the features of multiple branches through
adaptive class-specific weights. Another extension of CNN
methods for HSI classification is to design different effective
network structures to emphasize the information extraction and
raise the recognition precision, such as residual CNN [41],
attention-based CNN [42], and densely connected CNN [43].

However, the CNN-based methods for HSI classification
are usually trained in a supervised manner, and large-scale
samples are required to optimize a great number of parame-
ters [44], [45]. The acquisition of manually labeled samples
costs a lot of time and expertise, resulting in the problem
of inadequate network training with a small sample set.
In addition, the unsupervised methods of autoencoders learn
features from unlabeled samples through image encoding and
reconstruction, whereas the target of maximizing categori-
cal discrimination is not explicit, reducing the expression
ability [46], [47]. Furthermore, the insufficient utilization of
multilayer feature maps from low to high levels in CNN
losses part of the HSI characteristics and limits the learning
performance. From a contextual perspective, spectral attributes
and spatial relationships in the neighborhood are important
for ground object recognition, and multiscale contexts reflect
the structural information at different levels [48]-[50]. Small-
and large-scale contexts mainly focus on the complementary
internal features and external relationships, respectively, but
there exist challenges for multiscale feature learning in an
unsupervised way. On the other hand, texture information
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is a conductive feature description for HSI classification to
reflect the spatial distribution and changing patterns of ground
objects [18], [51]. CNN methods using spectral bands extract
high-level semantic features of spectral attributes rather than
geometric textures, which is inadequate for comprehensive
and discriminative feature representation. It is significant to
integrate diverse feature learning through the deep network for
better performance, but how to collaboratively accomplish the
texture learning with other characteristics in the unsupervised
framework remains to be studied.

Consequently, in this article, we propose an unsupervised
multiscale and diverse feature learning (UMsDFL) method for
HSI classification, which deeply considers the spatial-spectral
features via CNN, as shown in Fig. 1. In our UMsDFL,
the HSI is first segmented into superpixels using the simple
noniterative clustering (SNIC) algorithm [52], which is an
improvement of the simple linear iterative clustering (SLIC)
algorithm [53]. The SNIC has the advantages of low com-
putational complexity and good segmentation results, and it
is modified to be compatible with the hyperspectral input.
On the other hand, the principal component analysis (PCA)
and nonsubsampled contourlet transform (NSCT) are adopted
to HSI sequentially for dimensionality reduction and geomet-
ric texture extraction, respectively. By employing the SNIC
segmentation boundaries to HSI and NSCT images, HSI
superpixels and NSCT superpixels are obtained for diverse
deep feature learning. Based on the segmented superpixels,
an effective unsupervised spatial-spectral CNN network is
built for feature learning, which is synthetically designed
with the convolutional encoder and decoder, the additional
clustering branch, and multilayer feature map combination.
Two branches of the decoder and K-means clustering are
structured for image reconstruction and feature discrimination,
respectively, followed by the backward error propagation. The
multilayer feature map combination is accomplished through
global average pooling (GAP) and adaptive weighted concate-
nation to enhance the feature reusability and integrity. For
multiscale feature learning, we propose to learn the object
attributes and spatial relationships of superpixels within small-
and large-scale contexts via the unsupervised network. Mul-
tiscale feature learning is performed on HSI superpixels and
NSCT superpixels in parallel, and it is beneficial to represent
the complementary information of objects and patterns in
multiple contexts. For diverse feature learning, we design
to learn spectral attributes of HSI superpixels and geometric
structure of NSCT superpixels via the unsupervised network.
The deep features of contourlet textures emphasize object con-
tours at various levels and in different directions for geometric
representation, which makes up for CNN’s shortcomings.
Finally, the random forest (RF) algorithm is employed as the
comprehensive classifier after UMsDFL, considering that it
can obtain stable performance with unbalanced and limited
training samples. Furthermore, superpixel regularization is
adopted to optimize the pixel classification results to improve
the continuity of boundaries corresponding to the superpixel
segmentation and superpixel-based feature learning.

The main contributions of this article are given as
follows.
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Flowchart of the proposed UMsDFL method for HSI classification.

We propose a novel framework of effective unsupervised
spatial-spectral CNN for HSI feature learning and land
cover classification. With two branches of decoder and
clustering, the network is trained and optimized itera-
tively under the error feedback of image reconstruction
and pseudolabel classification to learn features from
unlabeled samples and improve the feature discrimi-
nation among categories. Moreover, the information of
multilayer feature maps is combined for distinguishable
clustering through GAP and adaptive weighted concate-
nation to reuse the low-, middle-, and high-level features
and enhance the intrinsic cohesion.

To utilize the complementary multiscale characteristics,
we design to learn the object attributes and spatial
relationships in small- and large-scale contexts via the
unsupervised spatial-spectral CNN. The small-scale fea-
tures mainly describe hyperspectral properties and the
local structure of objects, and the large-scale features
represent spatial relationships and distribution patterns
between objects. The unsupervised multiscale deep fea-
ture learning effectively extracts the abundant contextual
information of unlabeled samples in various sizes and
from different perspectives.

To alleviate the insufficiency of geometric representa-
tion, we propose to learn the deep features of hyper-
spectral information and contourlet textures through
the unsupervised spatial-spectral CNN. The spectral
features focus on the object characteristics of opti-
cal absorption and reflection, and the textural features
focus on the geometric patterns of spatial structure and
distribution. The unsupervised diverse feature learning
is beneficial to raise the comprehensiveness of HSI

feature expression and mine the connotation of unlabeled
samples.

The rest of this article is organized as follows. The proposed
UMsDFL method is introduced in Section II. The experimen-
tal setup and results are illustrated in Sections III and IV,
respectively. The conclusion is presented in Section V.

II. METHODOLOGY

As shown in Fig. 1, our UMsDFL method has five main
steps. First, the modified SNIC algorithm is used to seg-
ment the HSI into superpixels with relatively uniform size
and regular shape, which are adopted as the basic units
for subsequent feature learning. Second, the effective unsu-
pervised spatial-spectral CNN with clustering branch and
multilayer combination is built for superpixel feature learning
to enhance the feature distinguishability. Third, the multiscale
deep features of object attributes and spatial relationships
in small- and large-scale contexts are learned through the
unsupervised CNN. Fourth, the diverse deep features of hyper-
spectral information and contourlet textures are extracted,
respectively, in the unsupervised manner. Finally, based on the
multiscale and diverse unsupervised feature learning, limited
labeled samples are utilized to train the RF classifier and
obtain the classification maps. Superpixel regularization is
adopted to optimize the classification results and achieve better
performance.

A. Superpixel Segmentation

The SNIC [48] algorithm is an improvement of the
SLIC [49] superpixel segmentation, retaining the desirable
properties of simple implementation, efficient computation,
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and control over the superpixel compactness and number.
In addition, the SNIC is noniterative and faster using less
memory and enforces connectivity from the start, which is
suitable for HSI processing. In order to be compatible with
hyperspectral input, the affinity of a pixel to the centroid is
modified and measured using the distance in high-dimensional
space of spectral and spatial coordinates. With the spatial
position X and hyperspectral vector S, the distance D, j)
between pixel i and j is calculated by

1Xi = X012 | IS — 85117
Di,j:\/ la)xj + la)sj

(1

where ||-||> means the Euclidean distance calculation of spec-
tral and spatial coordinates. X; and S; are the hyperspec-
tral vector and the spatial position of the ith superpixel,
respectively. wy and wg are the weights of spatial and spectral
distances, respectively. For an image of N pixels segmented
into K superpixels, assuming the square shape of a superpixel,
the value of wy is set to be (N/K)'/2. wg is the compactness
factor to adjust the shape compactness and boundary adher-
ence, which is user-defined.

First, from the initial centroids, the SNIC algorithm uses
a priority queue to choose the next pixel to add to a cluster.
The priority queue is filled with connected candidate pixels
and pops up the candidate with the smallest distance. Then,
an online updating of the corresponding centroid is performed
according to each new pixel added to the superpixel. The
online updating is executed effectively through a single itera-
tion due to the local similarity in images. After executing the
modified SNIC algorithm, the HSI is segmented into superpix-
els with relatively uniform size and regular shape, which are
adopted as the basic units for subsequent unsupervised feature
learning and classification result regularization.

Although the grid partition can also generate image patches
for unsupervised CNN training, the grids do not adapt to the
shape and distribution of ground objects, which influences
the feature extraction and reduces the learning efficiency.
Employing the SNIC superpixels to generate spectral and
textural training patches is conductive to optimize the char-
acteristic identification and enhance the unsupervised CNN
convergence. On the other hand, there exists a salt and pepper
effect in the pixel classification results, which is discrete and
discontinuous in the complicated regions. It is necessary to
adopt the superpixel regularization to improve the classifica-
tion boundaries since SNIC superpixel segmentation has good
adherence to the ground objects. Therefore, the advantages of
SNIC superpixel segmentation in HSI processing are gener-
ating adaptive training patches and optimizing classification
maps.

B. Unsupervised Spatial-Spectral Feature Learning

The labeled samples are generally limited for HSI classifica-
tion, and meanwhile, a great number of unlabeled samples con-
tain abundant information and potential image features. It is
difficult for the supervised CNN methods to learn rich char-
acteristics and correct relationship training with small sample
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sets due to insufficient feature expression and model optimiza-
tion. In order to utilize the unlabeled samples, an effective
unsupervised spatial-spectral CNN is synthetically built with
the convolutional encoder and decoder, the additional clus-
tering branch, and the multilayer feature map combination,
as shown in Fig. 1. The encoder compresses the input HSI
into a latent-space representation, and the decoder reconstructs
the input HSI from the latent-space feature, making the input
and output as close as possible in an unsupervised manner.
For feature compression, the CNN encoder is designed with
depthwise separable convolution [54], nonlinear activation,
and downsampling layers with residual connections [55].
In detail, the depthwise separable convolution is integrated
by individual depthwise and pointwise convolution to extract
the feature maps faster with fewer parameters. For image
reconstruction, the decoder is designed to be symmetrical with
the encoder to implement feature decompression. The encoder
and the decoder are represented as

F* = ReLU(Cypp ® F*! + byp)
= ReLU(Cpw ® (Caw ® F*' + bay) + bpw) (2
F&M = Maxpool (FY) (3)
Fit! (4)

where F¥=! and F* denote the feature maps at last and next
layers, respectively. The symbol ® means the convolutional
operation between kernel and feature map. Cypy, is the separa-
ble convolution kernel integrated by Cay and Cpy, namely, the
depthwise kernel with channel-by-channel calculation and the
pointwise kernel with point-by-point calculation, respectively,
and bgpp, baw, and by, are the corresponding bias parameters.
ReLU(x) is the nonlinear activation function employed in this
study, which equals to x when x is positive and keeps 0 when x
is negative. Fe, and Fy. denote the feature maps of the encoder
and the decoder, respectively. Maxpool(-) and Upsample(-)
are the maxpooling and upsampling functions to compress
and amplify feature maps in the encoder and the decoder,
respectively.

Considering to balance the learning ability and model sim-
plicity, the encoder is composed of five blocks with 1, 2, 2, 2,
and 1 convolutional layers, respectively. Following the second,
third, and fourth blocks, there are maxpooling operations and
residual connection, compressing the feature maps and raising
the learning efficiency. Then, GAP is utilized to encode the
feature maps of the fifth block to obtain a feature vector as
the latent-space representation. The structure of the decoder
is symmetrical with the encoder for unsupervised learning via
image reconstruction and error feedback, and the number of
convolution kernels at the last layer is set to the dimension of
input HSI.

To further differentiate the features learned through unsu-
pervised CNN, the K-means branch is designed to add to the
network for latent-space feature clustering in addition to the
decoder branch. The K-means algorithm is adopted due to
the stable clustering performance, simple implementation, and
effective execution during network training. In each epoch of
training, the K-means branch inputs with the GAP encoded
features and outputs the clustered assignments, by iteratively

= Upsample(F(fe)
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calculating distance and adjusting centroids. Then, the clus-
tered assignments are regarded as the pseudolabels of unla-
beled samples for network prediction, error calculation, and
label updating. The error propagates backward to adjust the
gradients and parameters through network training. Besides,
the number of clusters is set according to the land cover
types in HSI, keeping the feature extraction consistent with
the subsequent classification. With the structure of decoder
and K-means output branches, the network is trained iter-
atively and interactively with the error feedback of image
reconstruction and pseudolabel classification. Given a training
set X = {xy,x2,...,xy} of N superpixels, F,(x,) denotes
the encoded feature of x, with network parameter «, and
z, denotes the pseudolabel associated with x,,. The K-means
branch produces a centroid matrix M in size of d x k, where
d and k are the dimension of x, and the number of clusters,
respectively. M, is a centroid vector corresponding to the
pseudolabel z,, in M. Then, the object functions of K-means
clustering and pseudolabel classification are expressed as

N
1 .
Hymg = min — Y " min | F, (x,) — M, ||* ()
M N —
1 N
Hysa = min > L(Sp(Fu(xn), 20) (6)

where || - ||*> means the Euclidean distance calculation of
encoded features and centroids within the same clustering.
Hyms and Hpgq are the clustering and classification object
functions, respectively. Sg means the classifier with parameter
f for the encoded features, and L(-) is the loss function
using categorical cross-entropy. The unlabeled superpixels are
trained in the minibatch using the Adam strategy for the
adjustment of the learning rate.

In the unsupervised network, the encoder extracts HSI
features layer by layer from concrete to abstract, and the high-
level features contain more discriminative semantics than low-
level features. However, for some objects that are recognized
with significant concrete features, such as color and edges,
the low-level features are more representative than high-
level ones. Moreover, the feature maps at different levels
are complementary to each other and describe objects from
multiple perspectives, which are conductive to raise the clus-
tering effect. Therefore, we combine the feature maps of
the second, third, and fifth blocks to enhance the feature
grouping and differentiating, which contain low-, middle-, and
high-level information of the encoder, respectively. Consid-
ering that there exist expression redundancy and clustering
difficulty in high-dimensional features, GAP is employed to
compress the feature maps effectively, and then, multilayer
GAP features are concatenated and input into the K-means
branch. Furthermore, the importance and contribution of mul-
tilayer features are unequal for various samples due to the
diversity of object attributes and spatial patterns. Hence,
the adaptive concatenation is designed with adjustable and
trainable weights to highlight the more significant features for
each sample. The multilayer feature combination and adaptive
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concatenation are represented as

Feomb = 01Gp, + 0,Gy, + 03Gy,
= 0,GAP(Fy,) + 0,GAP(F,,) + 0:GAP(F;,) (7)

where GAP(-) means the operator of GAP and F.oyp is the
combined multilayer feature with adaptive weighting. Fp,, and
Gy, denote the output feature maps and GAP features of the
ith block, respectively. 8, 8>, and 05 are the adjustable weights
for adaptive concatenation, which can be trained through
the clustering branch. The K-means branch clusters samples
using the combined multilayer vectors and propagates error
backward to optimize the encoder parameters. After network
training, the encoded features of the fifth block are extracted
as the unsupervised deep features for subsequent classification
using small sample sets.

C. Multiscale Unsupervised Feature Learning

Conventionally, CNN extracts image deep features layer by
layer with fixed-size receptive fields and sliding convolution
kernels. However, the ground objects in HSI show great het-
erogeneity in size, shape, and spatial relationships with obvi-
ous multiscale characteristics. In CNN, the fixed-size receptive
field limits the observation context and is not useful to capture
the scale-related information, thus reducing the performance.
Therefore, it is necessary to integrate the multiple contextual
information in the spatial domain and perform multiscale
unsupervised deep feature learning. As shown in Fig. 1,
small- and large-scale branches are designed to extract the
unsupervised features of object attributes and spatial patterns
in various contexts, and no more scale branches are adopted
due to the feature redundancy and model complexity with
more contexts. For the small-scale branch, the unsupervised
spatial-spectral CNN mainly learns the inner hyperspectral
and structural features of objects. For the large-scale branch,
the network mainly extracts the external surrounding and
associated relationships of objects. In this study, the size
of contexts in two branches is set to 32 x 32 and 64 X
64, respectively, which is tested practically to be suitable
for multiscale feature extraction. The 32 x 32 and 64 X
64 contexts are beneficial to extract the local attributes and
distribution patterns of ground objects, respectively, which is
complementary for spatial feature representation. The multi-
scale unsupervised deep feature learning and fusion can be
represented as

F3’A2 = Encode(léz) (8)
F, = Encode(l&) ©)
Fr = [Fip: Fia] (10)

where I, and I}, denote the patches of ith superpixel within
32 x 32 and 64 x 64 contexts, respectively, which are
extracted according to the centroid of superpixels. Encode(-)
means the feature transformation of the encoder, changing an
HSI patch into a vector. The unsupervised learned features Fi,
and FJ, are concatenated to obtain the multiscale feature F!
for subsequent classification.

More precisely, for the superpixels inside class bound-
aries, the neighborhood information is relatively uniform and

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on April 11,2022 at 08:12:44 UTC from IEEE Xplore. Restrictions apply.



5524617

consistent, and a large-scale context is required for feature
learning to achieve better recognition. For the superpixels
across class boundaries, the neighborhood is more complex
and inconsistent, and a small-scale context is needed to avoid
introducing disturbing noise. Therefore, multiscale feature
learning obtains deep characteristics of superpixels in different
contexts through unsupervised spatial-spectral CNN, utilizing
the abundant information of unlabeled samples and improving
the performance with a small sample set.

D. Diverse Unsupervised Feature Learning

In order to improve the comprehensiveness and diversity
of unsupervised learning, deep features of hyperspectral infor-
mation and geometric textures are designed to learn and fuse.
Considering that direct stacking of multiple input costs less
execution time but is not beneficial for targeted information
extraction and parameter training, diverse features are learned
separately from two branches for better discrimination and
classification. For objects with typical hyperspectral charac-
teristics, the spectral branch contributes more, and for objects
with significant geometric patterns, the textural branch is
more important. Contourlet texture [56] is a multidirection
and multiscale transformation, which combines the Laplacian
pyramid [57] and the directional filter bank (DFB) from the
framing pyramid [58]. Subsequently, Cunha et al. [59] pro-
posed an overcomplete contourlet method, called NSCT, which
has the advantages of fast implementation, shift invariance, and
multiscale and multidirection expansion. The NSCT is suitable
for HSI processing to extract and highlight the geometric
structure of ground objects, followed by unsupervised deep
textural feature learning. It is more effective and appropriate
than wavelet and Gabor transformations since the wavelet and
Gabor perform insufficiently for multidirection and multiscale
conditions, respectively. The NSCT can use fewer coefficients
to capture more edge contours in the HSI, which is significant
for textural description and object identification. Specifically,
the core of NSCT is a nonseparable two-channel nonsubsam-
pled filter bank (NSFB), and the NSCT can be divided into two
shift-invariant parts, namely, the multiscale nonsubsampled
pyramid (NSP) and the nonsubsampled directional filter bank
(NSDFB). In NSP, the multiscale characteristics are gained
using two-channel and 2-D NSFBs, and the nonsubsampled
Laplacian decomposition can be expressed as

{x;y _ ¢« PED) ¢ gron -

) — x  PED) & gron
where x € R™™™ denotes the decomposed input signal. PF%D)
and x}}) represent the high-pass filter and the high-frequency

part of decomposition at level 1, respectively, and PF(LD) and
xS) represent the low-pass filter and the low-frequency part,
respectively.

In NSDFB, the DFB is constructed by combining sam-
pled two-channel filter bank and resampling operation, and
the result is a tree-structured filter bank. The NSDFB is
built by eliminating the downsampler and the upsampler
in DFB, and the filter is upsampled through turning off
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the downsampler/upsampler in each two-channel filter bank.
The DFB is calculated by

(1) (1)

Xpy =Xg * DF; € R™"
(1) (6] nxm
Xy =Xy *DF; € R
.H,Z H 2 (12)
xl(,ll?K = xl(dl) * DFg € R™™

where DF; (k 1,2,...,K) represents the DFB and K
is an exponent of 2 in general. The high-frequency part
x}}) is decomposed into multiple directional subbands (x},lj)l,
xg’)z, cees xl(dl’)K). The input signal is decomposed in subsequent
stages via decomposing low-frequency components obtained
by the previous again. NSCT decomposition consists of the
multiscale decomposition of NSP and the tree decomposition
of NSDFB. The NSDFB is a two-channel filter bank, and 2X
directional subbands are gained through the decomposition of
K -element tree.

Contourlet transformation extracts the geometric informa-
tion using multiscale and multidirection subbands to approxi-
mate the HSI, which is conductive to the detection of textures
and edges. In this study, the NSCT decomposition of HSI
is adopted as the geometric expression, in addition to the
hyperspectral bands, to perform deep feature learning through
unsupervised CNN for diverse representation. In order to
highlight the main geometric structure and avoid noise interfer-
ence, PCA is first employed to obtain the dimension-reduced
data. The PCA algorithm sequentially finds a set of mutually
orthogonal coordinate axes from the original data space to
reduce HSI bands and minimize information loss. In this
study, the first three principal components gained by PCA
are adopted for the NSCT decomposition and unsupervised
feature learning, which retains more than 98% of original HSI
information.

Balancing the model complexity and texture redundancy of
NSCT transformation for HSI expression, the decomposition
of appropriate levels is performed on each principal component
to obtain decomposed images, respectively. In this study,
total 48 decomposed images of three principal components
are stacked and input into the unsupervised CNN for deep
geometric feature learning. Moreover, NSCT training patches
are extracted based on the superpixels segmented via the
SNIC algorithm using HSI bands. Similarly, there exist the
multiscale characteristics of the geometric structure in NSCT
decomposed images. Hence, the multiscale unsupervised fea-
ture learning is utilized for NSCT images, which can be
represented as

F3"27n = Encode(l_gizf,l) (13)
F(, , = Encode(I, ,) (14)
Frs o = [Fi > Foa ] (15)

where Ii, , and I, , denote the NSCT patches of the
ith superpixel within 32 x 32 and 64 x 64 contexts,
respectively. Encode(-) means the feature transformation of
the encoder, changing an NSCT patch into a vector. The
unsupervised features Fi, , and F/, , are concatenated to
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obtain the multiscale NSCT deep feature F'_, for subsequent
classification.

In order to integrate the advantages of hyperspectral and
spatial information, the unsupervised deep features learned
from HSI and NSCT patches, as well as raw spectral values,
are assembled to achieve the multiscale and diverse features,
which is expressed as

Ft;s_hn = [Fxlns’ Ft;s_n’ Flis} (16)
where Fi_ | is the fused feature to describe the ith superpixel

from multiple perspectives of small- and large-scale contexts,
as well as spectral and textural representation, and F}| is raw
spectral values. F! and F!_  mean the multiscale features of
HSI and NSCT superpixels, respectively. The multiscale and
diverse feature learning obtain abundant deep characteristics
of superpixels through unsupervised spatial-spectral CNN,
utilizing latent content of unlabeled samples to raise the

performance.

E. Comprehensive Classification

In machine learning, RF is a widely employed classifier
with stable performance for many applications. It contains
multiple decision trees, and the output category is determined
by the mode of individual tree outputs. For the construction
of each tree, bootstrap sampling is utilized to take samples
with replacement and form the training set, and partial input
features are selected to determine the decision results of
nodes. The RF classifier has suitable advantages for HSI
classification, such as producing stable results, processing
high-dimensional inputs, and maintaining performance with
limited and unbalanced data. Therefore, RF is adopted as
the comprehensive classifier to recognize land cover cate-
gories based on multiscale and diverse unsupervised feature
learning.

In unsupervised CNN feature learning, the SNIC superpixels
are employed to extract patches and produce the training
dataset with meaningful contexts. In comprehensive classi-
fication, pixels are first used as the basic units to obtain
initial classification results. Let ¢, denote the base learner of
each decision tree, which is trained using the dataset D,. The
integrated classification can be expressed as

T
7 = argmaxz H((ﬂr (Fnj;s,hn) = y)
=1

yey

a7

where F! . means the multiscale diverse feature of the
jth pixel and Z/ is the corresponding RF predicted result.
Y denotes the set of class labels, and y denotes the predicted
label of each decision tree. 7 and ¢ mean the complete set
and the subset, respectively. For each decision tree, there is
a separate subset of observations not used for training, called
out-of-bag (OOB) observations, which can be employed as a
testing set to evaluate the performance. The overall score of
OOB observations is calculated to provide a single measure
for RF performance as an alternative to cross-validation.
The OOB error is the main basis to choose the optimal feature
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set for the RF classifier, which is calculated by

T
Py, = argmax Y [ [(0:(Fi ) =¥). x¢ D (18)

YEr o

1
E())Cob:m Z H(Pgob7éy)

(x,y)eD

19)

where |D| represents the size of dataset D and x represents
the samples not used for base learner training. Fi ., Py,

and E_, denote the multiscale and diverse feature, OOB
prediction, and OOB error with samples not used for training,
respectively.

Through the RF classifier with OOB estimation, multiscale
and diverse features are fused and identified to obtain the
initial land cover mapping, but there exists a salt and pepper
effect in pixel classification results. Therefore, superpixel
regularization is designed to optimize the pixel results, which
assigns the internal pixels of each superpixel with the same
labels by means of majority voting. In each superpixel,
we count the classification labels of all internal pixels, then
take the major label as the superpixel category, and update
the internal pixels with other labels to the major label.
Superpixel regularization is beneficial to eliminate the salt
and pepper effect, reduce noise interference, and maintain
the continuity of land cover distribution. Finally, the compre-
hensive classification results are evaluated qualitatively and
quantitatively.

For the overall flow of UMsDFL, there are three main steps
during training. The first is the SNIC segmentation and gener-
ation of HSI superpixels and NSCT superpixels. The second is
the multiscale and diverse network training in parallel, namely,
the small and large scales for HSI and the small and large
scales for NSCT. For each unsupervised network, it is trained
before with only the decoder branch and then fine-tuned later
with both decoder and clustering branches. The third is the
comprehensive classification through multiscale and diverse
feature fusion and RF classifier training. For land cover predic-
tion, contextual patches of each pixel should be first extracted
and transformed by parallel CNNs to obtain multiscale and
diverse feature vectors. Then, feature vectors are concatenated
and input into the trained RF classifier to get pixel results.
Finally, superpixel regularization is implemented on the pixel
results to achieve the optimized classification maps.

III. EXPERIMENTAL SETUP
A. Datasets

1) Houston Dataset: The dataset was acquired over the
University of Houston campus and neighboring urban areas.
The hyperspectral data were acquired by the ITRES Compact
Airborne Spectrographic Imager 1500 (CASI-1500) sensor and
provided by the 2013 IEEE Geoscience and Remote Sensing
Society (GRSS) Data Fusion Competition. The data are in
the size of 349 x 1905 pixels with 2.5-m spatial resolution,
including 144 bands ranging from 380 to 1050 nm. The land
cover is marked into 15 categories, and 15 029 labeled samples
are given in the ground-truth image, as shown in Table I and
Fig. 2.
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TABLE I
LAND-COVER CLASS IN THE HOUSTON DATASET

Class | Land Cover Type | No. of Samples
Cl Healthy grass 1251
Cc2 Stressed grass 1254
C3 Synthetic grass 697
C4 Tree 1244
C5 Soil 1242
(6} Water 325
C7 Residential 1268
C8 Commercial 1244
9 Road 1252
C10 Highway 1227
Cl1 Railway 1235
C12 Parking lot 1 1233
C13 Parking lot 2 469
Cl4 Tennis court 428
C15 Running track 660

Total 15029
TABLE II

LAND-COVER CLASSES IN THE PAVIA DATASET

Class Land Cover Type No. of Samples
Cl Water 65971
C2 Trees 7598
C3 Asphalt 3090
C4 Self-blocking bricks 2685
C5 Bitumen 6584
C6 Tiles 9248
Cc7 Shadows 7287
C8 Meadows 42826
Cc9 Bare soil 2863

Total 148152
TABLE III

LAND-COVER CLASSES IN THE DIONI DATASET

Class Land Cover Type No. of Samples
Cl Dense urban fabric 1262
C2 Mineral extraction sites 204
C3 Non-irrigated arable land 614
C4 Fruit trees 150
C5 Olive groves 1768
C6 Coniferous forest 361
C7 Dense sclerophyllous vegetation 5035
C8 Sparce sclerophyllous vegetation 6374
Cc9 Sparcely vegetated areas 1754
C10 Rocks and sand 492
Cl11 ‘Water 1612
C12 Coastal water 398
Total 20024
2) Pavia Center Dataset: The dataset was acquired

by the Reflective Optics Spectrographic Imaging System
03 (ROSIS-03) sensor over the center of Pavia, Italy,
with 115 spectral bands. It is an image of 1096 x 1096 pix-
els, but some part contains no information and needs to
be discarded. After processing the image and removing the
noisy bands, HSI data are in the size of 1096 x 715 pixels
with 1.3-m spatial resolution, including 102 bands. There
are 148152 labeled samples and nine classes of land cover
categories in the ground-truth image, as shown in Table II and
Fig. 3.
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Fig. 2. (a) False color image and (b) ground-truth map of the Houston dataset
(15 land-cover classes).

Fig. 3. (a) False color image and (b) ground-truth map of the Pavia dataset
(nine land-cover classes).

Fig. 4. (a) False color image and (b) ground-truth map of the Dioni dataset
(12 land-cover classes).

3) Dioni Dataset: The HyRANK dataset was acquired
by the Hyperion sensor on the Earth Observing-1 satellite,
containing five HSIs, namely two training images (i.e., Dioni
and Loukia) and three validating images (i.e., Erato, Kirki, and
Nefeli). Among them, the Dioni is selected for experiments
since it has a sample size of greater than 100 in each
category. The data size is 250 x 1376 pixels with 30-m spatial
resolution, including 176 bands. A total of 20024 pixels are
labeled in 12 classes in the ground-truth image, as shown in
Table III and Fig. 4.

B. Evaluation Indices

In this study, we focus on improving the training and
classification performance using small sample sets. Hence,
a small number of labeled samples are selected from each
land cover category for model training, and the remaining are
used as a testing set. The numbers of training samples per
class are set from 5 to 18 to demonstrate how the classifi-
cation accuracy changes with increasing samples. Afterward,
in order to evaluate the performance of different methods from
multiple perspectives, the indicators of overall accuracy (OA),
accuracy for each class (CA), and Kappa coefficient (Kappa)
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are calculated and analyzed. The confusion matrix is a cross-
tabulation of ground truth and predicted labels, organizing
samples in a way that summarizes the classification results
and quantifies the accuracy. The diagonal elements of the
confusion matrix highlight the correct identification, and the
nondiagonal elements show the missing and incorrect iden-
tification. Let Q;; denote the pixel with ground truth i and
classified as type j, and let N = >, 5", Q;; denote the
total number of all pixels in HSI. OA indicates the overall
classification accuracy of all pixels, which is represented as
> Qii
N

OA = (20)

where the range of i and j is (1,2,...,K), and K is the
number of land cover types. CA means the accuracy of
each category related to classification maps and refers to the
probability that predicted types are equal to true labels under
the assumption of classification conditions. The CA of class i
is calculated by

Qi
25 Qij
where CA is also known as the user’s CA. Kappa is employed
for the consistency evaluation and calculated based on the
confusion matrix. OA and CA reflect the proportion of correct
classification but are not suitable for evaluating the unbalanced

samples, whereas Kappa can describe the unbalanced confu-
sion matrix. The Kappa is calculated by

OA — O,

1 -0

Dok (Z, Oij - > Qik)
N-N

where the range of i, j, and k is (1,2, ..., K), and K is the
number of categories.

CA; 2y

Kappa = (22)

Q. = (23)

C. Parameter Settings

In our proposed UMsDFL method, most of the parameters
are set by default. Concretely, PCA operation reduces the
high dimensions of HSI to three dimensions, which contains
over 98% information of the original data. Considering to
balance the model complexity and feature redundancy of
decomposition, five-level NSCT is performed on each prin-
cipal component, and 16 decomposed images are obtained,
respectively. Each principal component is decomposed into the
one-level image, two-level image, and three-level images in
two directions, four-level images in four directions, and five-
level images in eight directions. Total 48 decomposed images
of three principal components are stacked and input into the
unsupervised spatial-spectral CNN for deep geometric feature
learning.

The numbers of convolution kernels at each layer of the
unsupervised spatial-spectral CNN are significant parameters,
which influences the ability of deep feature extraction. More
convolution kernels can learn more groups of features, whereas
more kernels will increase the training parameters, reduce the
execution efficiency, and raise the overfitting risk. Therefore,
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Fig. 5. Performance versus the value of # with (a) OA and (b) Kappa on
Houston, (c) OA and (d) Kappa on Pavia, and (e) OA and (f) Kappa on Dioni
using five (N = 5), ten (N = 10), and 15 (N = 15) training samples per class,
respectively.

considering to balance the learning ability and model simplic-
ity, the numbers of convolution kernels are set to 64, 64, 96,
128, and 128, respectively, for five blocks in the encoder. The
structure of the decoder is symmetrical with the encoder, and
the numbers of convolution kernels are set to 128, 96, 64, input
dimension, and input dimension, respectively, for five blocks.
The sizes of the convolution kernel and pooling window are
setto 3 x 3 and 2 x 2, respectively. The unsupervised network
is first trained through 300 epochs with only the decoder
branch to obtain a stable initialization and second trained
through 300 epochs with both decoder and clustering branches
to enhance the feature differentiation in a batch size of 128.
The NAdam (i.e., Adam with the Nesterov accumulation)
optimizer and the Adam optimizer with default parameters are
employed to adjust the learning rate during the first and second
training processes, respectively. The mean square error is used
as the evaluation index during the first training, and the mean
square error and the categorical cross-entropy are used as the
indexes for decoder and clustering branches during the second
training, respectively. For the comprehensive classification
based on multiscale and diverse feature learning, the number of
decision trees in the RF classifier is set to 300 to simplify the
model complexity and maintain the classification performance.

In order to balance the spectral similarity and spatial
distance in SNIC segmentation, the compactness parameter
related to weights wy and wg is set to 10, maintaining the
performance of feature learning and classification regulariza-
tion. The size of superpixels in the segmentation map is an
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important parameter, which influences the learning efficiency
and effect of unsupervised CNN. For feature learning and
classification as in [60], large- and small-scale superpixels
are merged through superpixel-level majority voting to retain
accurate boundary information and spatial context information.
For spatial postprocessing, superpixels can be utilized to opti-
mize the class boundaries and correct the misclassified pixels,
such as the conditional random field (CRF) method [61].
In this study, multiscale spatial context information is extracted
via the unsupervised CNN feature learning in the structure
of parallel network branches, centered on the segmented
superpixels. Superpixels in an appropriate size are needed to
maintain the accurate boundaries of ground objects and adapt
to multiscale contextual feature learning. Since the image size,
spatial resolution, and object distribution of each HSI are
not consistent, it is not meaningful to directly set the same
number of superpixels for all datasets. Generally, fewer pixels
are needed to represent a ground object in the HSI with low
spatial resolution, so each superpixel should contain fewer
pixels to ensure cohesion and similarity. In contrast, more
pixels are needed to represent a ground object in the HSI
with high spatial resolution, so each superpixel should contain
more pixels for the complete description. Therefore, a heuristic
formula for adaptive calculation of superpixel size based on
the HSI spatial resolution is proposed, which is expressed as

. 100
"~ Res!/?

where Ns denotes the number of pixels inside each super-
pixel in initial and Res means the spatial resolution of HSI
(i.e., meters per pixel). The parameter € controls the relation-
ship between spatial resolution and superpixel size, and the
sensitivity analysis of 6 is performed and shown in Fig. 5.
The number of pixels inside each superpixel is set to the value
less than 100 with Res greater than 1 and is set to the value
greater than 100 with Res less than 1. Among them, if 6 is
smaller, the superpixel size changes more drastically with the
spatial resolution, and vice versa. In addition, the classification
performance of different superpixel segmentation methods is
also explored using SNIC [52] and entropy rate superpixel
(ERS) [62] algorithms.

The classification performance of the UMsDFL method
using different superpixel algorithms with various 6 values
is displayed in Fig. 5. The experiments are executed 20 times
with randomly selected training samples, and the mean OA
and Kappa are shown. The results illustrate that the SNIC
algorithm has similar performance to the ERS on Pavia and
Dioni datasets, and has a little better classification accuracy
than the ERS on the Houston dataset. Therefore, the SNIC
algorithm is adopted in this study to segment the HSI into
superpixels for multiscale and diverse unsupervised feature
learning. For the sensitivity analysis of €, the overall OA and
Kappa with different parameter values do not change much.
On the one hand, the 6 should not be too small, as it will
cause the superpixel size to change drastically with spatial
resolution, and @ should not be too large, as it will reduce the
superpixel cohesion in the HSI with low spatial resolution.
On the other hand, the & value of 7 with the SNIC algorithm

Ns (24)
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shows relatively better classification performance on Houston
and Pavia datasets, and has stable performance on the Dioni
dataset. Hence, 6 is set to 7 in this study to decide the
superpixel size during segmentation for a more reasonable
representation of ground objects.

D. Ablation Study

In order to demonstrate the module effectiveness of the
UMsDFL method, an ablation study is performed on the three
datasets. Ablation analysis is carried out between single-scale
and multiscale methods, and between single-type and diverse
methods. USsFL_H and Unsupervised Large-scale Feature
Learning (ULsFL)_H methods apply the RF classifier to small-
and large-scale unsupervised HSI feature learnings, respec-
tively, to demonstrate the ability of single-scale HSI features.
USSFL_N and ULsFL_N methods apply the RF classifier
to small- and large-scale unsupervised NSCT feature learn-
ings, respectively, to demonstrate the ability of single-scale
NSCT features. Moreover, UMsSFL_H and UMsFL_N methods
apply the RF classifier to the multiscale unsupervised feature
learning of HSI and NSCT data, respectively, to demonstrate
the ability of multiscale features. UMsFL_HSI unsupervised
features and Spectral values (HS) and UMSFL_NSCT unsu-
pervised features and Spectral values (NS) methods fuse
the hyperspectral values based on UMsFL_H and UMsFL_N
methods, respectively, to demonstrate the ability of multiscale
features with spectral information. All results of these methods
are optimized with superpixel regularization after the RF
classification. To reduce the effect of random factors, training
samples are selected randomly 20 times, and the experiments
are carried out correspondingly. The mean OA and Kappa are
shown in Fig. 6 for ablation analysis.

It is illustrated that the classification performance of OA
and Kappa rises as the number of labeled samples increases
due to more information and better fitting. In comparison
between single-scale methods, the HSI-based method has
similar accuracy to the NSCT-based, which both express the
main information of HSI at a single scale. The difference is
that small-scale feature learning is a little more discriminative
than large scale, considering that small-scale learning pays
more attention to local attributes of ground objects and avoids
noise interference. Furthermore, combining the small-scale
details and large-scale relationships, the multiscale feature
learning (UMsFL_H and UMSsFL_N) has a more distinctive
capability for better classification. Multiscale feature learning
is beneficial to represent the various ground objects in terms of
spatial distribution and contextual patterns. On the other hand,
based on the fusion of hyperspectral values and multiscale
features, the OA and Kappa of UMsFL_HS and UMsFL_NS
are improved and become more stable with different numbers
of labeled samples. In order to integrate the spatial-spectral
information and textural structure, the UMsDFL method fuses
multiscale diverse features through comprehensive classifi-
cation and achieves the best performance. Diverse feature
learning is conductive to the deep mining and complementary
description of object attributes from multiple perspectives.
Therefore, our proposed method is superior to the single-scale
or single-type feature learning methods.
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Fig. 6. Performance versus the number of labeled samples per class
with (a) OA and (b) Kappa on Houston, (c) OA and (d) Kappa on Pavia,
and (e) OA and (f) Kappa on Dioni using different ablation methods.
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Fig. 8. Pavia dataset. (a) OA and (b) Kappa as functions of the number of
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IV. EXPERIMENTAL RESULTS
A. Comparison Methods

To verify the effectiveness of the UMsDFL method for
HSI land cover classification, a series of experimental tests
are carried out. Our proposed approach is compared with the

UNSUPERVISED SPATIAL-SPECTRAL CNN-BASED FEATURE LEARNING FOR HSI
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Fig. 9. Dioni dataset. (a) OA and (b) Kappa as functions of the number of
labeled samples per class.

state-of-the-art methods in the following. SAE_Logistic
Regression (LR) [26] is the first DL attempt to employ the
autoencoder for HSI classification using a greedy layerwise
strategy to pretrain each layer and then fine-tune the classi-
fier. 3-DCAE [37] is an unsupervised spatial-spectral feature
learning method proposed for HSI classification based on the
3-D convolutional autoencoder. After pretraining, the SVM
is utilized to classify the hidden features on the top. Low
Spatial Sampling Distance (SSDL) [39] is a framework to
merge spatial and spectral features via SAE and deep CNN,
respectively, followed by the spatial pyramid pooling and
LR classifier. The features of 7 x 7 neighbor regions are
learned through the autoencoder pretraining with 80% of
data. 3-DVSCNN [38] is a method that provides the valuable
sample set and employs the CNN to extract deep features for
HSI classification. An active learning strategy is adopted to
construct the valuable training set by iteratively selecting the
most uncertain samples through SVM, and 80% of samples
are picked to form the set. CNN_HSI [36] is a model that
combines the multilayer 2-D convolutions and local response
normalization for HSI classification using dropout strategy
and data augmentation. 3-DGAN [32] is a method built upon
CNN and GAN structure, containing a generative network
and a discriminative network in competition. Two CNNs are
designed to generate the so-called fake inputs and discriminate
the inputs, respectively. MDL4OW [63] is a multitask DL
framework that simultaneously conducts the classification and
reconstruction with probable unknown classes in HSI. Two
strategies for few- and many-shot scenarios with the extreme
value theory are proposed to improve the performance.

To reduce the effect of random factors, training samples are
selected randomly 20 times on each dataset, and classification
tests are carried out correspondingly with various numbers of
labeled samples. Both the means and standard deviations of
OA, CA, and Kappa indicators are calculated in the experi-
mental analysis.

B. Classification Results

To show the effectiveness of the proposed method,
we quantitatively and qualitatively evaluate the classification
performance by comparing UMsDFL with the aforemen-
tioned baseline methods. Figs. 7-9 show the OA and Kappa
of 8 methods (i.e., SAE_LR, 3-DCAE, SSDL, 3-DVSCNN,
CNN_HSI, 3-DGAN, MDL40OW, and our UMsDFL) when
varying the number of training samples per class from 5 to 18.
In general, as the number of samples increases, the
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CLASSIFICATION ACCURACY (%) AND KAPPA MEASURE USING SAE_LR, 3-DCAE, SSDL, 3-DVSCNN, CNN_HSI, 3-DGAN, MDL40OW, AND
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TABLE IV

UMSsDFL FOR THE HOUSTON DATASET WITH FIVE LABELED SAMPLES PER CLASS AS TRAINING SET

Class SAE_LR 3DCAE SSDL 3DVSCNN CNN_HSI 3DGAN MDL40OW UMsDFL
Cl 86.75+8.47 89.41+£6.01 70.95+8.88 90.31£6.61 88.60+£6.86 | 64.08+£14.30 | 84.28+13.06 | 90.951+6.68
Cc2 58.17£7.98 78.9949.32 | 47.00£26.92 | 74.83+14.65 | 81.15£11.02 | 28.26+10.18 | 53.314+24.05 | 83.03+11.48
C3 96.531+3.52 93.74+4.42 | 68.29420.12 88.344+5.95 94.84+£6.97 | 73.29+11.28 89.2548.12 100.00+0.00
C4 87.17£7.63 92.46+£1.45 | 48.70£17.16 89.08+6.73 91.79£3.16 | 31.58£12.20 | 66.40+33.71 95.31+£2.52
(6] 79.23+14.31 85.39+6.70 | 54.61£19.57 98.22:+2.47 93.09£7.40 | 69.40£13.62 | 90.26+11.43 94.98+3.56
Co6 73.29+4.07 76.86+£9.64 | 50.71£27.14 84.00+7.30 81.91+7.62 | 70.74£10.68 76.34+8.15 91.69+4.53
C7 42.00£9.43 48.214+9.98 37.59+£18.46 | 55.55+9.74 47.69+8.74 | 37.40+14.01 | 44.86£13.95 86.53+3.02
C8 26.59+12.71 | 30.70£10.06 | 14.05+£17.51 45.724+7.38 | 31.56+12.50 | 36.42+£10.00 | 43.25+8.78 39.27+7.27
C9 57.22£14.71 | 61.14£15.52 | 29.09£15.21 61.28+£9.62 | 51.02£22.30 | 21.37+£8.88 | 48.41£23.66 | 87.97+2.59
Cl10 33.01£9.47 36.72£11.84 | 30.73+10.80 | 61.30£11.57 | 26.63+19.44 | 71.96+£16.36 | 60.73+16.68 | 51.20+6.02
Cl1 52.79+18.95 | 47.81£18.46 | 27.58+12.95 | 51.94+12.93 | 39.64+27.33 | 54.57£15.58 | 59.06+14.98 | 64.12+11.42
C12 24.46+12.97 | 31.11+£10.03 | 32.52422.62 | 58.30+16.63 | 40.61+18.13 | 47.29+10.27 | 49.124+10.23 59.70+8.49
C13 33.82+8.09 58.53£9.31 21.54+8.77 74.61£7.87 56.03£26.56 | 40.17+13.14 | 75.67+£26.16 | 73.45+4.83
Cl4 97.10+1.81 92.71+3.83 78.64+£5.52 | 91.10+12.12 | 99.16%+1.16 | 90.33£10.82 | 93.55£7.97 100.00+0.00
C15 90.24+6.37 97.28+2.31 35.03£20.34 | 87.55+12.40 | 99.73+0.19 63.80+£5.26 | 83.85£19.67 | 100.00+0.00

OA(%) | 59.23£1.41 64.67£2.24 41.29£4.50 71.56£3.06 64.21£3.40 49.79+2.37 72.39£2.48 79.23£1.20

Kappa | 0.561£0.016 | 0.61940.024 | 0.367+0.048 | 0.6934+0.033 | 0.615+0.037 | 0.45940.025 | 0.702+0.030 | 0.776+0.013

Fig. 10.

Classification maps of the Houston dataset obtained by (a) SAE_LR, (b) 3-DCAE, (c) SSDL, (d) 3-DVSCNN, (e) CNN_HSI, (f) 3-DGAN,

(g) MDL4OW, and (h) UMsDFL when the number of training samples is five per class (the percentage in the brackets is the corresponding accuracy).

TABLE V
CLASSIFICATION ACCURACY (%) AND KAPPA MEASURE USING SAE_LR, 3-DCAE, SSDL, 3-DVSCNN, CNN_HSI, 3-DGAN, MDL40OW,

AND UMSDFL FOR THE PAVIA DATASET WITH FIVE LABELED SAMPLES PER CLASS AS TRAINING SET

Class SAE_LR 3DCAE SSDL 3DVSCNN CNN_HSI 3DGAN MDL40OW UMsDFL
Cl1 98.51+1.07 99.17+0.43 98.08+£1.30 99.8410.45 96.28+1.97 99.39+0.37 99.26+0.39 99.85+0.18
C2 80.75£11.66 84.47+4.55 80.85+7.38 84.83£11.12 | 77.69+16.51 | 41.95£21.34 | 77.54+14.81 87.77+5.00
C3 85.12+£11.11 94.59+3.79 76.89+9.33 90.03£5.90 81.29+18.89 | 66.25+14.71 | 75.994+22.10 | 83.59+5.84
C4 58.00+£35.87 | 76.30£13.77 | 67.88+15.77 | 88.17+£10.00 | 87.94£14.97 | 84.88+13.23 | 88.82+12.86 | 98.77+1.02
C5 64.11£34.54 | 72.79+£10.09 | 55.95+13.53 83.37+7.10 | 66.95+£10.26 | 62.84+9.12 | 71.65+11.44 | 97.09+2.01
Co6 82.28+21.59 | 92.18+7.02 | 74.60+£12.85 | 87.66+12.17 | 92.38+8.46 22.8616.65 67.74+36.75 95.18+4.31
Cc7 79.82+8.98 80.35+3.79 76.50+8.14 84.39+5.69 72.02+£8.91 75.01£12.16 82.78+6.26 83.66+4.19
C8 91.42+3.87 89.56£5.39 74.90+8.69 96.03£3.04 91.73£9.00 94.46+3.77 97.70£1.20 96.60+0.63
C9 95.461+5.64 98.31£1.87 87.61+9.39 89.63+8.52 98.36+£1.80 | 49.33+13.51 | 77.02+28.00 | 98.54+1.68

OA(%) | 91.02+£1.32 92.58+1.54 84.91+2.86 95.10+1.34 90.85+2.64 85.50+2.01 95.3710.68 96.49+0.32

Kappa | 0.874+£0.019 | 0.89640.021 | 0.792+0.038 | 0.9314+0.019 | 0.872+0.035 | 0.7934+0.027 | 0.935+0.010 | 0.9504-0.004

classification accuracy gradually improves due to more suf-
ficient samples and richer features. First, the SAE_LR, SSDL,
and 3-DGAN methods produce relatively worse classification
results with lower accuracy and consistency. The SAE_LR
and SSDL methods learn features via CNN and SAE, respec-
tively, whereas the performance is limited by the network
structure and training skills to be improved. The 3-DGAN

method generates fake inputs and discriminates the images,
but the parameters of generation and discrimination networks
are hard to learn well using limited samples. Second, the
CNN_HSI and 3-DCAE methods output classification results
with moderate accuracy. The CNN_HSI method gets poor
performance with fewer samples, and the accuracy improves
significantly as the number of samples increases, reflecting
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TABLE VI

CLASSIFICATION ACCURACY (%) AND KAPPA MEASURE USING SAE_LR, 3-DCAE, SSDL, 3-DVSCNN, CNN_HSI, 3-DGAN, MDL40OW,
AND UMSDFL FOR THE DIONI DATASET WITH FIVE LABELED SAMPLES PER CLASS AS TRAINING SET

Class SAE_LR 3DCAE SSDL 3DVSCNN CNN_HSI 3DGAN MDL40OW UMsDFL
Cl1 12.69+£25.83 | 40.03+£9.95 | 27.59+24.38 | 61.51+£1691 | 53.13£12.87 | 47.36£14.04 | 58.00+16.65 | 69.24+15.95
C2 20.69£25.41 | 73.11£11.86 | 49.22+19.21 | 83.63+16.67 | 86.03+9.80 | 82.70+18.51 | 81.91£18.26 | 90.60+£9.32
C3 64.43+41.51 | 64.97+12.11 | 30.62+11.34 | 63.86+£12.52 | 63.31%£11.50 | 35.47+£12.47 | 524442578 | 68.78+4.28
C4 22.40+£29.03 87.81+8.23 | 52.67£24.68 | 75.40+11.47 | 77.27£13.59 | 47.07£17.13 | 68.60+£22.63 | 89.11+11.12
C5 15.144£23.26 | 59.92+10.23 16.73£8.28 | 56.99+15.27 | 42.58+8.14 | 44.85+13.47 | 68.96+15.18 | 63.09+8.50
Co6 8.70+£13.82 97.88+£1.37 | 71.86£12.69 | 98.95+1.42 95.96+£4.90 | 73.68£11.05 | 89.25+14.79 | 97.23+7.03
C7 79.34+8.74 83.544+9.69 | 56.63£26.07 | 86.17+10.54 | 62.09+13.73 | 51.33£17.54 | 67.02+16.80 | 74.72+7.62
C8 75.65+£12.51 | 66.06+12.16 | 71.48+£15.07 | 56.65+14.13 | 54.37+15.80 | 52.44+£18.47 | 55.02+11.58 | 81.13+5.84
c9 17.10£24.05 | 48.924+13.68 | 29.79+£33.64 | 49.10+13.83 | 45.84+£11.47 | 42.294+1540 | 44.66£12.13 | 52.99+13.53
C10 51.26449.30 | 91.52+£4.96 | 69.59£24.40 | 92.85+4.38 90.47+6.71 92.20+4.73 93.46+4.53 96.85+4.12
Cl1 100.00+0.00 | 81.25£15.79 | 99.74£0.58 | 75.69£15.68 | 85.46+21.59 | 99.99+0.02 90.38+9.28 100.00+0.00
C12 6.53+14.61 62.24+17.85 | 57.74+9.14 | 84.50£14.54 | 32.74+33.49 | 96.81+9.49 | 84.62+12.34 | 100.00+0.00

OA(%) | 59.62+4.48 69.32+3.27 56.831+4.55 68.121+4.48 58.92+5.88 56.10+3.97 66.90+5.57 77.26+£2.48

Kappa | 0.503£0.060 | 0.63040.036 | 0.479+0.048 | 0.61940.047 | 0.513£0.062 | 0.47540.037 | 0.610£0.061 | 0.7234-0.030

Fig. 11. Classification maps of the Pavia dataset obtained by (a) SAE_LR,
(b) 3-DCAE, (c) SSDL, (d) 3-DVSCNN, (e) CNN_HSI, (f) 3-DGAN,
(g) MDL4OW, and (h) UMsDFL when the number of training samples is
five per class (the percentage in the brackets is the corresponding accuracy).

the feature learning patterns of supervised CNN. The 3-DCAE
method employs a 3-D convolutional autoencoder to enhance
the feature expression and recognize the objects better than
SAE_LR, but the lack of discriminative constraints reduces
the accuracy. Third, the 3-DVSCNN and MDL4OW methods
obtain relatively stable precision for land cover identification.
The 3-DVSCNN method is trained with more valuable samples
through active learning, whereas the CNN has disadvantages
of fixed-size receptive fields and single feature type. The
MDL40OW method estimates the unknown score with all data
using the statistical model in a multitask framework, but the
singular feature learning of CNN limits the performance.
Finally, as expected, the UMsDFL method achieves the
best performance in most cases, especially using a small
sample set. This is reasonable since the complementary infor-
mation of multiple scales and diverse features is helpful
for the recognition of object attributes and spatial relation-
ships. The unsupervised spatial-spectral CNN with clustering
and multilayer combination is conductive to extracting the
discriminative deep features from unlabeled training patches.

Moreover, the multiscale contextual information is beneficial
to identify land cover in different sizes and conditions, and
the consideration of diverse features is useful to distinguish
complicated and confusing objects. For Houston and Dioni
datasets, the classification gap among various methods is more
obvious than that for Pavia, and the overall precision of the
Pavia dataset is relatively higher considering there are fewer
categories and clearer discrimination.

C. Performance Under Limited Samples

The quantitative results acquired by various methods using
five samples per class are presented in Tables IV-VI, and
the highest record in each row is highlighted in bold. The
classification performance per class is evaluated by the CA
indicator, and there are obvious differences among the eight
methods. Using a small sample set for training, it is shown that
our proposed UMsDFL method has the greatest capability for
feature learning and land cover classification, achieving the
best OA and Kappa with the highest CA for most classes.
For the Houston dataset, the C3 (synthetic grass), C14 (tennis
court), and C15 (running track) classes are easy to distinguish,
and most methods have good recognition results. The UMs-
DFL method correctly identifies these three classes with the
CA of 100%, whereas the SSDL method shows especially
inferior performance on C15. The C12 (parking lot 1) and
C13 (parking lot 2) classes are confusing land cover types
with similar characteristics, and the UMsDFL has the best CA
for C12 and stable CA for C13, respectively. Moreover, the
UMsDFL method also achieves the highest CA for C9 (road)
class, which is linearly distributed with other objects and hard
to classify. In contrast, the CA of C8 (commercial) and C13
in SSDL, C12 in SAE_LR, C10 (highway) in CNN_HSI, and
C9 in 3-DGAN are relatively worse.

For the Pavia dataset, the classification accuracy and consis-
tency are generally better than those of the Houston and Dioni
datasets, containing more discriminative ground objects. The
C1 (water) class distributes continuously and is easy to identify
with distinct features, and UMsDFL and 3-DVSCNN methods
have the best and second best CAs for water, respectively.
On the contrary, the C2 (trees) class distributes discretely
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Fig. 12. Classification maps of the Dioni dataset obtained by (a) SAE_LR, (b) 3-DCAE, (c) SSDL, (d) 3-DVSCNN, (e) CNN_HSI, (f) 3-DGAN, (g) MDL40OW,
and (h) UMsDFL when the number of training samples is five per class (the percentage in the brackets is the corresponding accuracy).

along with other objects that tend to be mixed, and UMsDFL
and 3-DGAN methods obtain the best and worst results,
respectively. Furthermore, the C4 (self-blocking bricks), C5
(bitumen), and C6 (tiles) classes are artificial ground objects
with similar attributes and appearance, and UMsDFL method
has superior ability to distinguish them. The CA of C2, C6, and
C9 (bare soil) in 3-DGAN, C5 in SSDL, and C4 in SAE_LR
are relatively worse.

For the Dioni dataset, there exists the contiguous water
(CI11) with coastal water (C12) along the edge, and UMsDFL
and 3-DGAN methods obtain the best and second best
results for them, respectively, whereas the SAE_LR method
has extremely high and low accuracy for Cl1 and Cl2,
respectively. The C7 (dense sclerophyllous vegetation) and
C8 (sparse sclerophyllous vegetation) classes are similar types
of vegetation with different densities, occupying a relatively
large proportion of labeled samples, and the UMsDFL method
achieves the best CA for C8 and stable results for C7,
respectively. In addition, the C1 (dense urban fabric) class
is the man-made surface that distributes discretely, and the
UMSsDFL method identifies C1 better than other comparison
methods with diverse feature representation. Comparatively,
the SAE_LR method shows great unbalance in CA with poor
precision for C1, C5 (olive groves), C6 (coniferous forest),
and C12 classes.

D. Visual Comparison

The visual and qualitative comparison among the eight
methods using five samples per class is made in form of
classification maps, as shown in Figs. 10-12. In general, there
exists a salt and pepper effect in the result maps of SSDL
and SAE_LR, which uses pixels or discrete units for feature
extraction and classification. Although the 3-DGAN method
does not perform badly with the salt and pepper effect, the
classification boundaries do not match ground objects and
present the distribution of bars. The 3-DCAE and CNN_HSI
methods produce results with moderate appearance and con-
sistency, and the CNN relatively maintains the continuity

of pixel predictions within receptive fields and has lim-
ited identification accuracy. The 3-DVSCNN and MDL4OW
methods obtain basically clear classification maps, but the
boundaries of confusing objects are worse in complicated
conditions. As expected, the classification regions of the
UMSsDFL method are more coherent and complete with con-
tinuous boundaries, which adopts the multiscale and diverse
features to describe spatial relationships and geometric tex-
tures. Most objects are classified more correctly in UMsDFL
maps than the others due to the strategies of effective unsu-
pervised spatial-spectral feature learning and comprehensive
classification.

For the Houston dataset, the road, highway, and railway
are similar objects with linear distribution characteristics, and
most comparison methods are prone to confuse them. The
UMSsDFL method obtains better connectivity for road recog-
nition, and the main highway is identified badly by SAE_LR
and CNN_HSI methods. The 3-DGAN method losses a lot of
classification details in complicated regions although it keeps
the relatively linear shape of railways and highways. For the
Pavia dataset, the precision of the water class is high for most
methods, but there exist discontinuous regions in 3-DCAE,
3-DVSCNN, CNN_HSI, and MDL40OW methods, considering
that the accumulation of sediment in the river causes the
misclassification. As one of the main land cover types, the
UMSsDFL method recognizes meadows more completely and
continuously, whereas the meadows are confused with bitumen
and tiles intricately in comparison maps. For the Dioni dataset,
artificial surface objects of dense urban fabric have a poor
appearance in comparison results, and some regions of fruit
trees and sparse vegetation are misclassified as urban. The
3-DCAE, 3-DVSCNN, and MDL4OW methods have confus-
ing results for water and coastal water, and SAE_LR and
CNN_HSI methods tend to misclassify coastal water as water.
Due to the influence of the cloud and its shadow, the corre-
sponding ground objects are generally misclassified as various
types. The UMsDFL method achieves the best classification
boundaries and the least confusing area, especially for regions
of water and coastal water.
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Fig. 13. Total inferring time (seconds) of the compared methods on Houston,
Pavia, and Dioni datasets.

E. Efficiency Evaluation

The inferring time of various methods are concerned,
as illustrated in Fig. 13. All the experiments are carried out on
a Tesla P100 graphic processing unit with 16 GB of memory,
and the inferring time on full HSI is recorded. It is obvious
that the inferring time rises as the size of HSI increases. The
SAE_LR method is the fastest due to the simple network
structure and single feature learning, but its classification per-
formance is relatively worse. In contrast, the 3-DCAE method
is the slowest since the implementation efficiency of the frame-
work is not high and the 3-D convolutional calculation is a
bit time-consuming. The 3-DVSCNN and MDL4OW methods
have relatively stable classification results on three datasets,
but the MDL4OW method costs more execution time and has
lower efficiency. Although the UMsDFL method does not take
the least time for inferring, it achieves the best classification
results, considering it transforms multiscale and diverse fea-
tures from HSI. The UMsDFL method builds the unsupervised
spatial-spectral CNN in an appropriately designed structure,
which is suitable and effective for hyperspectral and textural
feature learning. It extracts comprehensive features via parallel
network branches and produces the best classification maps
using small sample sets to obtain superior performance with
a bit more but acceptable inferring time.

V. CONCLUSION

A UMsDFL approach for HSI classification has been pro-
posed in this article. In detail, after applying the modified
SNIC to HSI with the heuristic calculation of superpixel
size, the deep features of superpixels are learned through the
unsupervised spatial-spectral CNN. The network is designed
with the convolutional encoder and decoder, the clustering
branch, and the multilayer feature combination. Then, the
object characteristics and spatial relationships in multiscale
contexts are extracted through unsupervised CNN, and diverse
features of hyperspectral information and NSCT textures are
extracted collaboratively. Finally, we utilize the RF classifier to
fuse multiscale and diverse features, and obtain comprehensive
classification maps using the small sample set. The superpixel
regularization is adopted to optimize the pixel classification
results and achieve good performance.

In summary, the main contributions of this article are
proposals of the unsupervised spatial-spectral CNN with
clustering and multilayer combination, multiscale and diverse
feature learning, and comprehensive classification with lim-
ited labeled samples. Compared with the SAE_LR, 3-DCAE,
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SSDL, 3-DVSCNN, CNN_HSI, 3-DGAN, and MDL4OW
methods, the experimental results consistently show that the
unsupervised spatial-spectral feature learning of UMsDFL can
efficiently improve the feature expression and HSI classifica-
tion accuracy. The unsupervised CNN exhibits the excellent
ability of feature extraction, and multiscale and diverse feature
learning is conductive to raising the performance. In future
works, considering that the multiple features are distinct and
interconnected, we will further explore the attention mech-
anism to make full use of complementary advantages. For
the comprehensive classification, an advanced feature fusion
strategy will also be explored to promote the classification
results.
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