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Abstract— The necessary prerequisite for effective data fusion
is the strict registration of low-resolution hyperspectral images
(LR-HSIs) and high-resolution multispectral images (HR-MSIs).
However, registration requires a complex process that takes
into account the effects of light, imaging angle, and geometric
distortion of the image during acquisition. Therefore, to avoid
complex registration, we focused on developing an unregistered
HSI and MSI fusion method for pixel shifting, obtaining fused
images with high resolution, high signal-to-noise ratio, and
feature identifiability. We identified that the unregistered LR-HSI
and HR-MSI in the case of pixel shift are very similar to the
disparity maps in stereo vision. Inspired by this, we simulate the
structure of stereo cameras to propose a stereo cross-attention
network (SCANet) to achieve an accurate fusion of unregistered
LR-HSI and HR-MSI. Considering the model complexity and
computing efficiency, we design a simple and stackable stereo
cross-fusion block (SCFBlock) based on a Transformer to sim-
ulate the process of light entering the left and right cameras
by extracting the abstract features of the images. Moreover, the
purpose of cross-convergence fusion self-attention (CCFSA) is
to learn cross-complementary attention and collect contextual
information in horizontal and vertical directions to fuse unreg-
istered images using multidirectional cross-view information.
We have conducted extensive experiments on Pavia University
(PaviaU), Chikusei, and PYLake datasets. The results show that
the SCANet achieves superior or competitive performance in
fusing unregistered LR-HSI and HR-MSI in comparison with
the other competitors.

Index Terms— Data fusion, deep learning, hyperspectral image
(HSI), registration, stereo cross-attention network (SCANet).

I. INTRODUCTION

DUE to the limitations of the satellite sensor imaging
system, the acquired images are mutually constrained

in terms of high spatial and hyperspectral resolution and
cannot be obtained at the same time [1]. Image fusion can
integrate the complementary spatial and spectral advantages
of multispectral image (MSI) and hyperspectral image (HSI)
to generate a high-resolution HSI (HR-HSI) [2], [3]. HSI and
MSI fusion is widely used in remote sensing tasks, such as
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anomaly detection [4], [5], [6], spatial feature extraction [7],
[8], visual image analysis [9], and scene interpretation [10].

Based on the different stages of fusion in the process, MSI
and HSI fusion can be divided into pixel level, feature level,
and decision level [11]. Pixel-level fusion is generally used
for image data with different spectral features, preserving
more comprehensive and detailed information in the original
image [12], which is very beneficial to image understanding,
target detection, recognition, and so on. Therefore, image
fusion at the pixel level is the main research content carried
out in this article. At present, a large number of fusion
algorithms have been proposed, which are mainly classified
into traditional and deep learning methods. Traditional fusion
methods include component substitution (CS) [13], [14], mul-
tiresolution analysis (MRA) [15], [16], Bayesian [17], [18],
matrix decomposition [19], [20], [21], and so on. Most of
these methods are adapted from pansharpening techniques and
achieve good fusion results. However, these methods generally
assumed degradation models as a prior [22]. The degradation
model can reflect the characteristics of the sensor, but it is not
always fully available in the practical applications of remote
sensing. Hence, these algorithms need further improvement.

In recent years, deep learning methods have been widely
used in the field of computer vision, showing excellent
feature extraction capabilities. Meanwhile, some researchers
have started to introduce them into the fusion of HSI and
MSI [23], [24], [25]. Yang et al. [26] applied deep net-
works when performing MSI and HSI fusion, which can
better extract detailed information from HSIs. Liu et al. [27]
proposed a two-stream fusion network (TFNet) to solve the
pansharpening problem of MSIs. Zhang et al. [28] proposed
a convolutional neural network (CNN)-based spatial–spectral
information reconstruction network (SSR-Net) to improve the
spatial resolution of fused HSIs. Realizing that CNNs have
difficulty in capturing long-term dependencies in images, the
Transformer-based model aims at modeling remote dependen-
cies through a self-attentive mechanism [29]. Hu et al. [30]
designed a Transformer-based architecture (called Fusformer),
which can globally explore the intrinsic relationship within
features. The advantage of deep learning methods is that
all parameters in the network can be updated under the
supervision of training samples, thus reducing the need for
prior knowledge, and higher fitting accuracy can be expected.
Therefore, deep learning is gradually becoming the main-
stream method for image fusion.

However, both traditional and deep learning fusion methods
are designed based on the premise of strict registration of
HSI and MSI [31]. In general, two images of the same scene
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acquired by different sensors with different viewpoints can
cause geometric distortions, such as squeezing, stretching,
distortion, and translation due to illumination, season, angle,
and other factors [32]. In this case, image registration is
required to convert the images to the same coordinate system
to eliminate the geometric errors between them. Therefore,
registration is an essential step in the current image fusion pro-
cess. However, regardless of the registration methods adopted,
mismatching points will always be generated due to nonlinear
gray distortion and strong noise interference [33], which will
undoubtedly increase the computational burden and man-
ual involvement. Currently, robust registration algorithms for
large-scale multisource images are not available. Image fusion
can attenuate the modal differences of multisource data and
reduce the impact of redundant information on the registration
process. Therefore, the development of complementary robust
algorithms for registration-image fusion is expected in fusion
scenarios with relatively large modal differences.

With the above considerations, it is meaningful for us to
design deep learning fusion methods for unregistered HSI
and MSI. Inspired by the stereo vision imaging process [34],
[35], we noticed that the unregistered HSI and MSI are
similar to the scenes recorded by stereo cameras (temporarily
disregarding the presence of squeezed, stretched, and distorted
HSI and MSI). Therefore, we propose a stereo cross-attention
network (SCANet) based on a Transformer, which consists
of a two-branch parallel weight-sharing network to simu-
late the stereo camera structure. A stereo cross-fusion block
(SCFBlock) is designed in SCANet to control the information
flow-through channel attention and gate units to gradually pass
the fusion features from shallow to deep layers. Furthermore,
the construction of cross-convergence fusion self-attention
(CCFSA) makes SCANet powerful in cross-view information
exploitation. It should be noted that the differences between
unregistered images vary significantly with increasing errors,
which poses a significant challenge to capturing a reliable
correspondence between pixels. Finally, we design a sim-
ple fusion module to exploit the global spatial information.
We conducted extensive quantitative and qualitative experi-
ments on several datasets to demonstrate the effectiveness of
our proposed SCANet.

The contributions of this article are as follows.
1) The proposed SCANet can effectively avoid the com-

plicated registration process, and it aims to improve the
resolution, information content, sharpness, and signal-
to-noise ratio of the fused images and enhance the
identifiability of features in the fused images.

2) We designed a simple and efficient SCFBlock that takes
as a reference and simplifies the module constructed
by Restormer [36]. SCFBlock improves computational
efficiency and controls information flow by simplifying
the channel attention mechanism and gate unit to capture
global information while focusing on different informa-
tion details.

3) Considering that features at different locations have dif-
ferent importance to the fusion task, this article proposes
CCFSA. CCFSA can focus on the correlation between
the target pixels and the remaining pixels, so that pixels

at different locations have the same chance of expression
and, thus, capture the rich background information.
CCFSA is performed with complementary features gen-
erated by SCFBlock for cross-view interaction. The
unregistered images are fused using cross-view infor-
mation in multiple directions by collecting contextual
information in horizontal and vertical directions.

SCANet is a rewarding attempt at a pixel-level fusion
method for unregistered HSI and MSI. It provides a feasible
and beneficial attempt to reduce the data preprocessing process
and improve the efficiency of remote sensing applications.

The remainder of this article is organized as follows.
Section II describes the related work on HSI and MSI
fusion. Section III describes in detail the principles of stereo
vision. Section IV describes the architecture of SCANet and
elaborates SCFBlock, CCFSA, and global residual feature
fusion modules (GRFMs). Section V provides an in-depth
discussion of SCANet through ablation experiments and ana-
lyzes the experimental results of the comparison method on
the Pavia University (PaviaU), Chikusei, and PYLake datasets.
Section VI draws comprehensive conclusions and provides an
outlook on possible future research directions.

II. RELATE WORK

The fusion of low-resolution HSIs (LR-HSIs) and
high-resolution MSIs (HR-MSIs) can be approximately
divided into two categories: traditional methods and deep
learning methods. Therefore, this article presents related work
from the below two aspects.

A. Traditional Methods

Currently, the traditional fusion methods of LR-HSI and
HR-MSI mainly include CS, MRA, model optimization, and
matrix decomposition methods.

The CS [37], [38] and MRA [39], [40] methods were
first designed for remote sensing image pansharpening, and
their applications can be extended to HSI and MSI fusion.
The model optimization approach treats fusion as an inverse
problem. It models the relationship between the HR-HSI to be
fused and the LR-HSI and HR-MSI based on the degradation
mechanism of the spectral image and solves it by using an
optimization algorithm to obtain the fused image [41], [42].
The basic idea based on matrix decomposition is to decompose
the original matrix into the product of two matrices, thus
reducing the original high-dimensional matrix [43]. The matrix
decomposition is used to reduce the dimensionality of the
original image, and the decomposition results have a more
explicit physical meaning. Typical algorithms contain NMF
[44] and coupled NMF (CNMF) [45]. Although these methods
have achieved good results in HSI and MSI fusion, shortcom-
ings still exist. The CS methods can lead to the distortion of
the fused image spectral due to the incomplete wavelength
coverage of the two images. The MRA methods only extract
the high-frequency part of the high-resolution image, and the
fused image faces the problem of insufficient spatial resolution
improvement. Compared with the first two methods, the fusion
methods based on model optimization have higher fusion
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Fig. 1. Basic principles of the stereo image. (a) Simulation diagram of the stereo camera. (b) Images recorded by stereo cameras. (c) Unregistered HSI and
MSI. (d) Epipolar constraint relationship for stereo images.

accuracy, but the model solution is complicated. In addition,
the model optimization-based fusion method relies seriously
on manually designed features.

The way multiple remote sensing data sources are imaged
leads to their intrinsic relationships being more complex.
It is difficult for traditional methods to utilize these features
in an integrated way. Traditional feature extraction methods
destroy the original spatial–spectral structure in the image,
thus ignoring a large amount of implicit valid information.
Therefore, exploring more suitable feature extraction methods
is an important research direction for data fusion.

B. Deep Learning Methods

Compared with traditional methods, deep learning is broadly
used in remote sensing image processing and analysis for its
end-to-end integrity training approach and effective abstract
feature mining.

Currently, deep learning fusion methods are predicated
on strict registration [30]. Although some models [46] are
designed for the pansharpening problem, they can also be
directly applied to the fusion of HSI and MSI. He et al.
[47] proposed a hyperspectral pansharpening neural network
(HyperPNN) for the fusion of HSI and panchromatic images,
which improves the spectral prediction capability of the net-
work by adding a spectral prediction layer. Palsson et al.
[48] designed a 3DCNN network for HSI and MSI fusion,
using 3-D convolution to extract features of the input image.
However, all of the above methods considered both images
as a whole, and the network input was a merging of the two
images along the channel dimension, ignoring their respective
significant characteristics. To solve this problem, more and
more scholars have abandoned the use of single-branch net-
works. For instance, a remote sensing image fusion neural
network (RSIFNN) containing two branches was designed
by Shao and Cai [49] to extract the features of MSI and
panchromatic images, respectively, and fused the two features
for image reconstruction. Jiamin and Huihui [50], inspired
by U-net, divided the network into an encoding–decoding
structure, where the feature extraction part used two subnet-
works to extract the features of MSI and panchromatic image,

respectively. Zhou et al. [51] designed a two-stream network
with the self-attention to extract the modality-specific features
from the panchromatic images and MSI modalities and apply
a cross-attention module to merge the spectral and spatial
features. This method also pays attention to the influence
of cross-complementary information on image fusion but
does not take into account the importance of multidirectional
and long-range feature representation. The above methods of
CNN-based deep learning exhibit excellent feature extraction
capabilities. CNNs can extract multiple nonlinear features
with high invariance from hyperspectral data by convolutional
operations and mine complex relationships with disparate
features in multisource data.

The state-of-the-art approaches have employed CNNs to
encode meaningful features for image fusion [25], [27]. How-
ever, they do not consider the long-term dependencies in the
images. In recent years, more researchers have focused on
Transformer models, aiming to overcome this by modeling
remote dependencies with the help of self-attention mech-
anisms [30]. Vs et al. [52] developed a Transformer-based
multiscale fusion strategy that simultaneously processes local
and remote information for the fusion of infrared and vis-
ible images. Qu et al. [53] proposed a Transformer-based
multiexposure image fusion framework (TransMEF) using
self-supervised multitask learning. The framework is based on
an encoder–decoder network and can be trained on large natu-
ral image datasets. Wang et al. [54] proposed a new multilevel
cross-transformation algorithm (MCT-Net) to obtain the global
contextual information of two images to achieve sufficient
fusion of spectral and spatial information. Transformer makes
few assumptions about structural deviations in the input data
and is, therefore, a very flexible and versatile architecture.

The current fusion model is designed based on the
premise of strict image registration. Therefore, the devel-
opment of robust registration-fusion integration algorithms
is expected in fusion scenarios with significant geometric
errors. Guo et al. [55] first constructed a CNN, called Reg-
Net, to register pixel-level offsets between HSI and MSI.
Zhou et al. [56] proposed a registration algorithm that incor-
porates a point spread function (PSF) into a minimization
least square (LSQ) objective function applied to the fusion
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Fig. 2. Overall structure of SCANet. SCFBlock is a stereo cross-fusion block. CCFSA is a cross-convergence fusion self-attention module. GRFM is a
global residual feature fusion module.

of HSI and MSI. Nie et al. [57] learned the reconstruction of
the unregistered HSI with affine transform parameters between
the input two images by introducing a spatial Transformer
network (STN). Fu et al. [58] systematically evaluated the
effects of different methods for geometric misalignment on
RGB and HSI fusion. Qu et al. [31] proposed an unreg-
istered and unsupervised mutual Dirichlet-Net (u2-MDN),
which does not require multimodal registration to solve the
HSI super-resolution problem. Zheng et al. [59] proposed a
novel unsupervised spectral unmixing and image deformation
correction network, NonRegSRNet, which integrates dense
registration and super-resolution tasks into a unified model.
The above approach tries to avoid the image registration
process by designing a “registration + fusion” connection
network, but automatic and high-precision image registration
remains a challenging problem. Moreover, current fusion
methods mainly focus on the simple superposition of feature
modules, ignoring the intrinsic connection between multi-
source remote sensing data. Therefore, the proposed SCANet
in this article avoids the design of the registration algorithm
as a meaningful attempt.

III. BASIC PRINCIPLES OF STEREO VISION

The stereo camera uses the left and right views to
record the current scene. The complementary information
between the left and right views is cross-referenced during
the fusion process, which provides an additional constraint
for image fusion. Fig. 1(a) shows a schematic of the stereo
camera imaging model. Two cameras with parallel optical axes
capture the target scene from the left and right viewpoints,
and the recorded images are shown in Fig. 1(b). The left and
right views of the stereoscopic camera are offset, so the same
object in the scene is positioned somewhat differently in the
left and right views. The imaging process is very similar to
that of unregistered HSI and MSI (Fig. 1(c), only the case of
translation is considered).

In the stereo imaging process, a stereo camera with the
same focal length, the same pointing (i.e., parallel to the

optical axis), and two camera lines (baselines) perpendicular
to the optical axis is usually used. Under these conditions, only
horizontal parallax exists for the same object in the left- and
right-view images. The relationship between parallax and the
scene depth (the distance between the object and the camera)
can be expressed as follows:

γ =
B f
d

(1)

where γ is the scene depth; B is the baseline length between
the left and right cameras; f is the focal length of the camera,
and d is the parallax of the object in the left-view and right-
view images.

Using the complementary information between the left and
right views to improve the reconstruction quality of stereo
images, it is necessary to establish associations in the corre-
sponding regions of the left- and right-view images. Without
considering the occlusion, the corresponding regions of the
left- and right-view images should be on the same height
horizontal line, which is called the polar line. The fusion
algorithm for unregistered images should establish the associ-
ation between the left- and right-view images in conjunction
with the polar line constraint. The limit constraint relationship
of stereo images is shown in Fig. 1(d); that is, for any point
(h, w) in the left-view image, its corresponding point in the
right-view image should lie between (h, w) and (h, w+dmax),
where w and h represent the width and height of the left-
and right-view images, respectively, and dmax is the maximum
value of the parallax between the left- and right-view images.

IV. METHOD

In this section, we give the details of the proposed SCANet
for the fusion of images that are not strictly registered. We first
present the general framework of our SCANet. We then detail
our SCFBlock and the CCFSA. Finally, we propose a simple
fusion module to exploit the global spatial information.
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Fig. 3. (a) SCFBlock consists of two submodules: MTConv module and
FFN. (b) Restormer [36] consists of two submodules: MDTA and GDFN.

A. Overall Framework

The overall pipeline of our proposed SCANet is shown
in Fig. 2. Inspired by stereo vision imaging [60], SCANet
consists of a two-branch parallel weight-sharing network to
simulate the stereo camera structure. SCANet consists of three
main components: the SCFBlock module, the CCFSA module,
and a GRFM.

SCANet takes LR-HSI and HR-MSI as input, respectively.
HSI and MSI are first mapped to feature spaces of the
same dimension by a 3 × 3 convolutional layer, respec-
tively. Then, the image features are extracted, in turn, by n
SCFBlocks. In addition, to increase the information interaction
between LR-HSI and HR-MSI, a CCFSA is inserted after each
SCFBlock for weight sharing and feature fusion. The CCFSA
performs bidirectional cross-view interaction by combining
complementary features generated by SCFBlock. The full
utilization of LR-HSI and HR-MSI contextual information
is achieved by fusing the interaction information with the
input image features. The details of SCFBlock and CCFSA
are shown in Figs. 3(a) and 4. Finally, to reduce the burden
of feature learning, a simple GRFM is used to implement
the fusion of LR-HSI and HR-MSI. Compared with other
two-branch fusion networks, SCANet achieves geometric reg-
istration of HSI and MSI by simulating stereo vision structures
and then learns and matches attributes between different modal
information through parameter sharing, which allows SCANet
to avoid complex feature fusion operations.

B. Stereo Cross-Fusion Block

Restormer [36] is an efficient Transformer that enables it to
capture long-range pixel interactions while still being suitable
for high-resolution images by performing several key designs
in the building blocks [multi-Dconv head transposed attention
(MDTA) and gated-Dconv feed-forward network (GDFN),
Fig. 3(b)]. Therefore, based on the consideration of model
complexity and computational efficiency, the SCFBlock is
designed to be simplified with Restormer as a reference.
By superimposing multiple SCFBlocks, the deeper features of

the image can be extracted gradually to simulate the process
of light entering the left and right cameras.

The details of SCFBlock are shown in Fig. 3. SCFBlock
consists of two submodules: the multitranslation convolution
(MTConv) module and the feed-forward network (FFN) mod-
ule. Both modules use residual connections. The whole process
is formulated as follows:

X = MTConv(LN(X)) + X
X = FFN(LN(X)) + X. (2)

MTConv goes through a normalization layer, a 1 × 1 convo-
lution layer, a 3 × 3 depthwise convolution layer, a gate unit,
simplified channel attention, and a 1 × 1 convolution layer.
Formally, given an input X ∈ RH×W×C (H , W , and C are the
height, width, and the number of channels, respectively), the
MTConv is represented as follows:

MTConv(X) = (N1 ◦ D ◦ G ◦ S ◦ N2)(LN(X)) + X
N1(X) = Conv(X)

D(X) = DepthConv(X)

G(X) = Gating(GeLU(X))

S(X) = SCA(X)

N2(X) = Conv(X). (3)

Among them, LN and GeLU denote layer normalization
and Gaussian error linear unit, respectively. The MTConv
b1ock consists of five main functions: N1, D, G, S, and N2,
corresponding to a 1 × 1 convolution, a 3 × 3 depthwise
convolution, a gate unit, simple channel attention, and a
1 × 1 convolution, respectively. Compared with Restormer,
we use 3 × 3 depthwise convolution and gate unit instead
of self-attention and nonlinear activation functions (e.g.,
rectified linear unit (ReLU) and GeLU), respectively, mak-
ing the module more concise and efficient [Fig. 3(a)].
A 3 × 3 depthwise convolution can learn local structural
information and is simpler than self-attention [61]. The gate
unit first divides the input X ∈ RH×W×C into two subfeatures
X1,X2 ∈ RH×W×C/2 along the channel dimension and multi-
plies them together. The gate unit is expressed as follows:

Gating(X) = X1 ⊗ X2 (4)

where ⊗ stands for element-by-element multiplication.
In addition, related studies have shown that channel attention
can meet the computational efficiency requirements and cap-
ture global information [62]. Therefore, we further add the
channel attention after the gate unit and remove the ReLU,
sigmoid, and 1 × 1 convolution layers of the regular channel
attention. The simplified expression of channel attention is as
follows:

SCA(X) = X ∗ W ∗ pool(X) (5)

where ∗ is a channelwise product operation; W denotes the
learnable matrix, and pool is the global average pooling
operation.

FFN goes through a normalization layer, a 1 × 1 convo-
lution layer, a gate unit, and a 1 × 1 convolution layer. The
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Fig. 4. Structure of CCFSA.

processing of FFN can be expressed as follows:

FFN(X) = (N1 ◦ G ◦ N2)(LN(X)) + X
N1(X) = Conv(X)

G(X) = Gating(GeLU(X))

N2(X) = Conv(X). (6)

In summary, FFN that introduces a gate unit can control
the flow of information, thus allowing each layer to focus on
different details of the information.

C. Cross-Convergence Fusion Self-Attention

For unregistered images, features at different locations are
of different importance for the fusion task. CCFSA is to
capture rich contextual information by taking into account the
correlation between the target pixel and the rest of the pixels,
so that pixels at different distances have the same chance of
expression. CCFSA is to use the complementary features gen-
erated by SCFBlock as input for cross-view interaction. The
purpose of CCFSA is to learn cross-complementary attention
and collect contextual information in horizontal and vertical
directions to fuse unregistered images using multidirectional
cross-view information. CCFSA can interact symmetrically
and compactly for the formation of fused images in both
directions.

The structure of CCFSA is shown in Fig. 4. The feature
maps generated after a two-branch parallel SCFBlock are
HSI f , MSI f

∈ RH×W×C , respectively (H , W , and C are
the height, width, and the number of channels, respectively).
Three 1 × 1 convolutions are used to generate the query
matrix QHSI, QMSI

∈ RH×W×C , the key matrix KHSI, KMSI
∈

RH×W×C , and the value matrix VHSI, VMSI
∈ RH×W×C for

HSI f and MSI f , respectively.
We calculate the cross correlation between each pair of

query matrix Q and key matrix K and apply the softmax
function to obtain the corresponding attention weights. Take
the example of computing the cross correlation between QHSI

and KMSI. Let QHSI
u ∈ R1×C be the channel dimensional

feature vector of QHSI at position u, whose size is 1 × C .
Accordingly, obtain the set of key vectors KMSI

u ∈ R(H+W−1)×C

in KMSI centered on u, in the row and column directions. Since

there are a total of (H +W −1) positions (crosses), the vector
size is (H +W −1) × C . KMSI

i,u ∈ R is the i th element of KMSI
u ,

i ∈ {1 . . . , H + W − 1}. The cross-correlation degree of QHSI
u

and KMSI
i,u is calculated by affinity operation as follows:

dHSI→MSI
i,u = QHSI

u

(
KMSI

i,u

)T

dMSI→HSI
i,u = QMSI

u

(
KHSI

i,u

)T
(7)

AHSI→MSI
= Softmax

(
dHSI→MSI

i,u
√

C

)

AMSI→HSI
= Softmax

(
dMSI→HSI

i,u
√

C

)
(8)

where T is the matrix transpose and dHSI→MSI
i,u ∈

R(H+W−1)×W×H . After that, the softmax is used in the (H +

W − 1) dimension to obtain the attention response graph
AHSI→MSI

∈ R(H+W−1)×W×H . The same procedure is used for
the calculation between QMSI and KHSI.

To aggregate the information, the obtained attention graph
A and the value matrix V are reweighted by the aggregation
operation for features. Similar to the above process, the value
matrix VHSI is centered at the point u, and the set of value
vectors VHSI

u ∈ R(H+W−1)×C is obtained in the row and column
directions, and aggregation is defined in Fig. 4 as follows:

FHSI→MSI
u =

∑
i∈|VHSI

u |

AHSI→MSI
i,u VHSI

i,u

FMSI→HSI
u =

∑
i∈|VMSI

u |

AMSI→HSI
i,u VMSI

i,u (9)

where the size of FHSI→MSI
u is H × W × C ; AHSI→MSI

i,u is a
scalar, which is the i th feature vector corresponding to the
attention response graph AHSI→MSI at position u; and VHSI

i,u is
the i th feature vector in the set VHSI

u . FMSI→HSI
u is calculated

in the same way. In this way, we capture the remote contextual
information in the horizontal and vertical directions at position
u in the interaction feature.

Finally, the interacting cross-attention information
FHSI→MSI

u and FMSI→HSI
u and the information HSI f and

MSI f within the double branch are fused by elemental
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Fig. 5. Fusion results of SCANet in the horizontal registration error direction on the PaviaU dataset.

addition

FHSI = γ HSI F
HSI→MSI

+ HSI f

FMSI = γ MSI F
MSI→HSI

+ MSI f (10)

where γHSI and γMSI are trainable channelwise scales and ini-
tialized with zeros for stabilizing training. The computational
complexity of the CCFSA is only O[(H + W − 1) × H W ],
which can be lightly embedded in the feature extraction
module.

D. Global Residual Feature Fusion Module

A simple GRFM (Fig. 2) is located at the end of the
SCANet. A 3×3 convolution is applied to the refined features
to produce the residual images RHSI

∈ RH×W×C and RMSI
∈

RH×W×C , respectively, and the image inputs are summed to
obtain the reconstructed images, i.e., IHSI

= XHSI
+ RHSI and

IMSI
= XMSI

+ RMSI. Finally, the images of the upper and
lower branches are summed and fused to obtain the HR-HSI,
i.e., I = (IHSI

+ IMSI)/2.

V. EXPERIMENTS

To evaluate the effectiveness of the SCANet, we carry
out comprehensive experiments on the PaviaU, Chikusei,
and PYLake datasets. Experimental results show that the
SCANet achieves state-of-the-art performance on the PaviaU,
Chikusei, and PYLake datasets, where HSI and MSI are not
strictly registered. In Sections V-A–V-D, we first introduce
the datasets and implementation details; then, we perform a
series of ablation experiments on the PaviaU dataset. Finally,
we report the results of comparison methods on the Chikusei
and PYLake datasets.

A. Implementation Details

1) Evaluation Metrics: Root mean square error (RMSE),
peak signal-to-noise ratio (PSNR), spectral angle mapper
(SAM), structural similarity (SSIM), and erreur relative glob-
ale adimensionnelle de synthèse (ERGAS) are used to evaluate
the objective evaluation metrics of image fusion methods.

2) Experimental Data: We use the PaviaU, Chikusei, and
PYLake datasets to verify the validity of SCANet.

For PaviaU and Chikusei datasets, the LR-HSI is simulated
by using a 5 × 5 Gaussian filter with a standard deviation
of 2 and then by downsampling with the ratio of r from the
reference HR-HSI. The HR-MSI of five bands is generated
by a Landsat 8 spectral reflectance response (SRF) filter. The
blue–green–red bands of the Landsat 8 SRF were used for
PaviaU and Chikusei. In addition, a subarea of 800 × 800 pix-
els in the Chikusei dataset was cropped for the experiment to
reduce the computer’s operational burden.

The PYLake dataset is located at Poyang Lake, China.
The PYLake dataset contains Sentinel-2A MSIs with a spatial
resolution of 10 m and a size of 1200 × 1200 pixels in four
bands. The GF-5 hyperspectral data have a spatial resolution
of 30 m, a size of 400 × 400 pixels, and a total of 284 bands
after removing water vapor absorption and heavy noise bands
with a band range of 0.4–2.5 µm and serve as a reference
HR-HSI with an acquisition time close to that of Sentinel-2A.
The PYLake dataset was preprocessed with the environment
for visualizing images (ENVI). First, the multispectral and
hyperspectral data were orthorectified using the rational poly-
nomial coefficient (RPC) orthorectification module. Then, the
MSI is the reference image, and the HSI is the image to be
registered to select the control points with the same name for
registration, and the registration error is less than 0.5 pixels.
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Fig. 6. Fusion results of SCANet in the vertical registration error direction on the PaviaU dataset.

TABLE I
4× FUSION RESULTS (PSNR AND SSIM) ACHIEVED ON THE PAVIAU DATASET BY SCANET WITH DIFFERENT NUMBERS OF
SCFBLOCKS. H AND D REPRESENT THE REGISTERED ERRORS IN THE HORIZONTAL AND DIAGONAL ERROR DIRECTIONS,

RESPECTIVELY. THE BEST DATA ARE MARKED IN BOLD. THE ARROW ATTACHED TO THE METRICS
POINTS TO BETTER PERFORMANCE

The LR-HSI is simulated by using a 5 × 5 Gaussian filter with
a standard deviation of 2 and then by downsampling with the
ratio of r from the reference GF-5. The HR-MSI is simulated
by downsampling from Sentinel-2A to 30 m using bilinear
interpolation.

3) Training: Hyperspectral and multispectral unregistered
states are simulated by translating i pixels in horizontal,
vertical, and diagonal directions. All models are optimized
by the Adam with β1 = 0.9 and β2 = 0.999 with weight
decay 0 by default. The learning rate is 1 × 10−3. MSE is
the loss function. PaviaU and PYLake data are cropped with
a 128 × 128 pixels subregion in the center as the test image,
and the rest of the area is used for training; 256 × 256 pixels
subregion in the center of Chikusei is cropped as the test
image, and the rest of the area is used for training.

Besides, all the experiments are implemented by PyTorch
1.10.0 on Python 3.7. The model was trained on a PC with
3.1-GHz eight-core CPUs and 32-GB memory. The NVIDIA
NVS 310 GPU was used for acceleration.

B. Ablation Study

To verify the rationality of the SCANet, we conduct exten-
sive ablation experiments on the PaviaU dataset with different
settings for SCANet.

1) Number of SCFBlocks: We analyze the effect of different
sizes of SCANet on the fusion effect of unregistered images
(two pixels error) with different error directions. We construct
five different sizes of SCANet by adjusting the number of
SCFBlock, which are named SCANet-T (n = 2), SCANet-
S (n = 4), SCANet-B (n = 8), SCANet-M (n = 16), and
SCANet-L (n = 32). n is the number of SCFBlock. Besides,
we set the downsampling scale factor of LR-HSI to 4× during
the experiment.

Overall (Table I), the results in the horizontal error direction
are generally better than those in the diagonal direction.
The accuracy of PSNR and SSIM gradually increases with
the number of SCFBlocks, which proves beneficial to the
extraction of image abstract features. When the number of
SCFBlocks increases from 2 to 8, the PSNR in the horizontal
error direction improves by 1.29 dB, and the SSIM improves
by 0.009 dB; when the number of SCFBlocks increases
from 8 to 32, the PSNR in the horizontal error direction
improves by only 0.17 dB, and the SSIM is almost unchanged.
The trend of the diagonal error direction is consistent with this
result. SAM can respond to the spectral similarity between
images. The value of SAM gradually decreases with the
number of SCFBlocks, indicating that the increase in the
number of blocks is beneficial to the retention of spectral
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Fig. 7. Fusion results of SCANet in the diagonal registration error direction on the PaviaU dataset.

TABLE II
4× FUSION RESULTS ACHIEVED ON THE PAVIAU DATASET BY SCANET-B WITH DIFFERENT REGISTRATION ERROR DIRECTIONS. H ,

V , AND D REPRESENT THE REGISTERED ERRORS IN THE HORIZONTAL, VERTICAL, AND DIAGONAL DIRECTIONS, RESPECTIVELY.
THE BEST DATA ARE MARKED IN BOLD. THE ARROW ATTACHED TO THE METRICS POINTS TO BETTER PERFORMANCE

information between images. Considering the complexity and
time-running cost of the model, the SCFBlock is set to 8 by
default in the subsequent experiments.

2) Registration Error Direction: We use SCANet-B to
investigate the impact of registration error direction, setting
the registration error range of 1–8 pixels for LR-HSI and HR-
MSI.

Quantitative and qualitative results are shown in Table II
and Figs. 5–7. With the increase in the registration error, the
accuracy of PSNR and SSIM gradually decreases. When the
registration error is one pixel, the PSNR in all three error direc-
tions (horizontal, vertical, and diagonal) is greater than 40 dB.
In remote sensing applications, the registration accuracy of
images is generally required to be less than 0.5 pixels, and this
result shows the excellent fusion performance of SCANet-B.
When the registration error reaches eight pixels, it means that
the spatial positions of LR-HSI and HR-MSI differ by 1.3 × 8
= 10.4 m, and at this time, the feature types at the same point
change, making image fusion extremely difficult. However, the
PSNR in the horizontal error direction is 33.72 dB, and SSIM
is 0.83 dB; there are more consistent results in the vertical

error direction; the PSNR in the diagonal error direction is
30.59 dB, and the SSIM is 0.79 dB. SCANet-B can also obtain
satisfactory results.

It is worth noting that horizontal and vertical registration
errors theoretically have the same effect on the fusion perfor-
mance, while diagonal registration errors result in worse fusion
performance. However, the PSNR of horizontal registration
errors is consistently better than that of vertical and diagonal
registration errors (Table II, rotation = 0◦). Two main aspects
affect the registration error direction fusion performance: the
SCANet structure itself and the CCFSA. SCANet is designed
to mimic the structure of a binocular stereo camera. Its imag-
ing process is similar to the horizontal and vertical parallaxes
that occur when the left and right eyes of a person observe
the same object separately. However, the perception of vertical
parallax by the human eye is weaker than that of the horizontal
direction [63]. Therefore, it can be seen from Table II that
the PSNR of the horizontal registration error direction is
always the highest, as the error increases. Moreover, CCFSA is
learning cross-complementary attention, collecting contextual
information in horizontal and vertical directions, and fusing
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Fig. 8. Fusion results of rotating the PaviaU dataset 90◦ counterclockwise in the H , V , and D registration error directions, respectively.

TABLE III
FUSION RESULTS ACHIEVED ON THE PAVIAU DATASET BY SCANET-B WITH DIFFERENT ACTIVATION FUNCTIONS. H AND D

REPRESENT THE REGISTERED ERRORS IN HORIZONTAL AND DIAGONAL DIRECTIONS. THE BEST DATA ARE MARKED
IN BOLD. THE ARROW ATTACHED TO THE METRICS POINTS TO BETTER PERFORMANCE

unregistered images using cross-visual information from mul-
tiple directions. It compensates to some extent the deficiency
of SCANet in the vertical error direction. As the registration
error increases (Table II, rotation = 0◦), the PSNR in the
vertical direction gradually approaches that in the horizontal
direction (1PSNR of 2.41 (two pixels), 2.29 (four pixels),
0.63 (six pixels), and 0.78 (eight pixels) for the horizontal and
vertical error directions, respectively). This analysis leads to
the conclusion that the role of CCFSA, especially the ability to
fuse the interaction information in the vertical error direction,
gradually strengthens, as the registration error increases.

To verify the above inference, we reinput the original image
into SCANet by rotating it 90◦ counterclockwise. Observing
the fusion results in the H , V , and D error directions in the
range of 1–8 pixel errors (Fig. 8). Table II (rotation = 90◦)
shows that as the registration error increases, the PSNR in the
vertical direction gradually approaches that in the horizontal
direction (1PSNR of 3.13 (two pixels), 2.73 (four pixels),
2.14 (six pixels), and 1.83 (eight pixels) for the horizontal
and vertical error directions, respectively). The fusion results
with the original images maintain a consistent trend of change.

We show the visual results of PaviaU in different registration
error directions (from Figs. 5 to 8). These results suggest
that our SCANet-B reconstructs satisfactory fused images with
rich details and sharp edges. This demonstrates the powerful

TABLE IV
FOUR PIXELS REGISTRATION ERROR FUSION RESULTS ACHIEVED

ON THE PAVIAU DATASET BY SCANET-B WITH DIFFERENT
DOWNSAMPLING SCALE FACTORS. H AND D REPRESENT

THE REGISTERED ERRORS IN HORIZONTAL AND
DIAGONAL DIRECTIONS. THE BEST DATA ARE

MARKED IN BOLD. THE ARROW ATTACHED
TO THE METRICS POINTS TO

BETTER PERFORMANCE

ability of SCANet-B to fully learn complementary information
between images.

3) Activation Function: We designed the SCFBlock using
a gate unit instead of the nonlinear activation function in
Restormer. Therefore, we compare the fusion effect of four
different activation functions to verify the simplicity and
effectiveness of the gate unit. Besides, we set the registration
error of LR-HSI and HR-MSI to two pixels in the experiments.
⊕ in Table III represents the element-by-element summation.

Although GeLU and ReLU are the most commonly used
activation functions, the PSNR of X1 ⊗ X2 improved by
0.01 dB over GeLU and 0.5 dB over ReLU (Table III). The

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on October 24,2023 at 09:15:46 UTC from IEEE Xplore.  Restrictions apply. 



GUO et al.: SCANet FOR UNREGISTERED HSI AND MSI FUSION 5523515

Fig. 9. Fusion results of different deep learning methods on the PaviaU dataset.

TABLE V
FUSION RESULTS ACHIEVED ON THE PAVIAU DATASET BY SCANET

WITH DIFFERENT TYPES OF CROSS-FUSION MODULES.
THE BEST DATA ARE MARKED IN BOLD. THE ARROW

ATTACHED TO THE METRICS POINTS
TO BETTER PERFORMANCE

training time can reflect the running cost of the model. With
the number of the training set to 2000 iterations, the training
time of X1 ⊗ X2 is slightly less than that of GeLU and ReLU
(194.14 Ms less than GeLU and 109.46 Ms less than ReLU).
X1 ⊗ X2 has a slight advantage in operational efficiency.
X1 ⊕ X2 has a simple structure and runs faster, but its fusion
effect is slightly worse. The above analysis concludes that
X1 ⊗ X2 has a simple and efficient structure while satisfying
a good fusion effect.

4) Downsampling Scale Factor: We investigate the fusion
effect of LR-HSI with HR-MSI at different downsampling
ratios by comparing the accuracy of PSNR, RMSE, ERGAS,
SAM, and SSIM, under the condition that the registered error
is four pixels.

As the scale of downsampling increases, the spatial res-
olution of LR-HSI decreases, the spectral information of the
objects in the pixel is complicated, the boundary of the feature
is blurred, and the fusion with HR-MSI becomes gradually

more difficult. Comparing the PSNR in the horizontal error
direction in Table IV, 8× decreases by 0.83 dB compared
with 2×; while in the diagonal error direction, 8× decreases
by 2.69 dB compared with 2×. In terms of spatial fusion,
RMSE and SSIM can reflect the spatial details and structural
information of the fused images. The RMSE increases from
2.74 dB (2×) to 3.02 dB (8×) in the horizontal error direction
and from 3.70 dB (2×) to 5.05 dB (8×) in the diagonal
error direction. SSIM remains almost unchanged in the hor-
izontal error direction, while it decreases by 0.02 dB in the
diagonal error direction. The ERGAS for 2×, 4×, and 8×

in the horizontal error direction is 1.78, 1.83, and 1.88 dB,
respectively, and the 1ERGAS is 0.1 dB, while the 1ERGAS
in the diagonal error direction is 0.78 dB. The SAM for 2×,
4×, and 8× in the horizontal error direction is 2.23, 2.25,
and 2.20 dB, respectively, and the 1SAM is 0.03 dB, while
the 1SAM in the diagonal error direction is 0.53 dB. The
above analysis leads to the conclusion that the downsampling
scale of LR-HSI is more difficult to reconstruct the spatial
and spectral information of the image in the diagonal error
direction compared with the horizontal error direction.

5) Types of Cross-Fusion Modules: We compare the results
of SCFBlock with different cross-fusion modules to investigate
the potential influence introduced by different design choices.
DuAtt [64], CoordAtt [65], SAM [66], and CCFSA were
mainly selected for the experiments. Besides, we set LR-HSI
and HR-MSI as the horizontal registration error direction with
two pixels.

As shown in Table V, all models with SCFBlock
achieved good results. Specifically, SCANet + CCFSA can
achieve 0.09–7.99-dB improvement in PSNR, 0.02–1.57-dB
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Fig. 10. Loss function of different deep learning methods. (a)–(c) Loss functions for horizontal, vertical, and diagonal registration error directions.

TABLE VI
FUSION RESULTS OF DIFFERENT DEEP LEARNING METHODS ON PAVIAU DATASETS. H , V , AND D REPRESENT THE REGISTERED ERRORS

IN THE HORIZONTAL, VERTICAL, AND DIAGONAL DIRECTIONS, RESPECTIVELY. THE BEST DATA ARE MARKED IN BOLD.
THE ARROW ATTACHED TO THE METRICS POINTS TO BETTER PERFORMANCE

improvement in RMSE, and 0.01–1.02-dB improvement in
SAM compared with other models. It is also worth noting
that the model size of SCANet + CCFSA is 0.25M lower
than that of SCANet + DuAtt and 1.34M lower than that
of SCANet + SAM, indicating that CCFSA makes full use
of cross-complementary information between images while
having a simpler structure.

C. Comparison With Different Methods

We compare SCANet with the existing deep learning
fusion methods (experimented with three different registra-
tion error directions), including spectral stride fusion CNN
network (SSFCNN) [25], TFNet [27], SSR-Net [28], Fus-
former [30], super-resolution residual network_stereo atten-
tion module (SRResNet_SAM) [66], parallax-attention stereo
super-resolution network (PASSRnet) [67], and dual-branch
squeeze-fusion-excitation (DuSFE) [68]. For a fair compar-
ison, the registration error is set to two pixels for all the
methods.

1) Qualitative Evaluation: The comparative results of dif-
ferent fusion methods are shown in Fig. 9. In general,
PASSRNet can handle large noise, but lose edge definition
and detail information, and cannot effectively improve the
spatial resolution, and the fusion results are the most blurred.
SSFCNN, PASSRNet, and SRResNet_SAM have more obvi-
ous color distortion, which is shown in all three groups
of experiments. Both SSR-Net and DuSFE can effectively
improve the spatial resolution, and the texture of the features
is clearer, but the performance in terms of color fidelity is
slightly different. In the three groups of experiments, the
color of TFNet and Fusformer fusion result is similar to the
MSI, while the color of DuSFE and SSR-Net fusion result
is closer to the HSI, which indicates to some extent that the

spectral fidelity of DuSFE and SSR-Net is better than that of
TFNet and Fusformer. The fusion result of SCANet is closest
to the reference image with natural tones and shows good
spectral retention and spatial resolution enhancement in all
three groups of experiments.

2) Quantitative Evaluation: The comparative results of
different fusion methods are shown in Table VI. In terms
of spatial reconstruction, SCANet performs the best, and
DuSFE and SRResNet_SAM also perform better. The SSIM
of these three fusion results reached 0.8 dB in different
registration error directions, and the PSNR was above 35 dB.
This indicates that the spatial reconstruction ability of the
method based on the stereo vision principle is little affected
by the registration error. TFNet and Fusformer have excellent
fusion performance in the horizontal error direction, with both
PSNR reaching above 0.9 dB and SSIM of 0.907. However,
their PSNR and SSIM in the vertical and diagonal error
directions drop faster, making it difficult to focus on the spatial
information from different directions. In terms of spectral
retention, both SSR-Net and DuSFE showed good results. The
spectral fidelity of SSR-Net was poor in the diagonal error
direction, with SRResNet_SAM reaching 5.246 dB, but there
was a large improvement in the horizontal and vertical error
directions, indicating that SSR-Net was not good at processing
the spectral information in the diagonal direction. In these
three groups of experiments, the SAMs of SSFCNN and
PASSRNet reach 11 and 6 dB or more, respectively, with low
spectral retention. The results clearly show the effectiveness
of the SCANet.

3) Runtime Efficiency: We also report the runtime (eval-
uated on NVIDIA NVS 310 GPUs with 128 × 128 inputs,
Table VI) and the variation of the loss function (Fig. 10)
to compare the computational complexity among SSFCNN,

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on October 24,2023 at 09:15:46 UTC from IEEE Xplore.  Restrictions apply. 



GUO et al.: SCANet FOR UNREGISTERED HSI AND MSI FUSION 5523515

Fig. 11. Fusion results of different deep learning methods on (a) Chikusei and (b) PYLake datasets. H , V , and D represent the registered errors in the
horizontal, vertical, and diagonal directions, respectively.

TFNet, SSR-Net, Fusformer, SRResNet_SAM, PASSRNet,
DuSFE, and SCANet. SCANet has a PSNR of 38.36–41.08 dB
for the experiments in the three registration error directions,
with a 34.59% improvement in runtime over SRResNet_SAM
(Table VI), and the loss function converges at a faster rate
(Fig. 10). Considering the fusion quality again, the proposed
SCANet has the overall advantage in the fusion of LR-HSI
and HR-MSI.

D. Application of Real Remote Sensing Images

In practical applications, there are large gaps between
multisource remote sensing images, including data source,
acquisition time, spatial resolution, spectral number, and range.
Therefore, we used Chikusei and PYLake datasets to verify the
generalizability of SCANet. We likewise compared the results
of SSFCNN [25], TFNet [27], SSR-Net [28], Fusformer [30],
SRResNet_SAM [66], PASSRNet [67], and DuSFE [68] in
three registration error directions. The registration error is set
to two pixels.

1) Chikusei Dataset: The downsampling ratio of LR-HSI
is set to 4, i.e., we fused HR-MSI with a spatial resolution of
2.5 m and LR-HSI with a spatial resolution of 10 m. The size
of the Chikusei dataset is 800 × 800 pixels, the subregion of
256 × 256 pixels in the center is cropped as the test image, and
the rest region is used for training. Therefore, more training
samples are available compared with the PYLake dataset.
It can be visually observed that the SCANet greatly improves
the edge and feature texture information in the image, which
is superior to other fusion results (Fig. 11).

2) PYLake Dataset: The spatial resolution of HR-MSI in
the PYLake dataset is 30 m, and the downsampling ratio of

LR-HSI is set to 4, i.e., we fused HR-MSI with a spatial
resolution of 30 m and LR-HSI with a spatial resolution of
120 m. The PYLake dataset has complex feature types and
fragmented spatial distribution. When the registration error
is two pixels, the feature types at the same point in the
image may change, thus inevitably causing spatial and spectral
distortions during the fusion process. Fig. 11 shows that the
fusion results of all eight methods are significantly degraded
compared with the PaviaU and Chikusei datasets. SSFCNN
and SSR-Net produce severe spectral distortions. The loss
function of SSFCNN and SSR-Net can very well display
the spatial and spectral edge information. However, due to
the inaccuracy of HSI in performing upsampling operations,
high-frequency edge textures are lost compared with MSI, and
direct cross-channel fusion produces structural distortion. The
texture in the PASSRNet and SRResNet_SAM fusion results is
blurred. The color of the TFNet, Fusformer, and DuSFE fusion
results is close to MSI, while the SCANet fusion results are
close to HSI. Both DuSFE and SCANet showed good spatial
resolution enhancement ability in the three experiments.

The fusion effect of SCANet varies with specific variations
when processing different images under different acquisition
conditions. However, it can be concluded from the experi-
mental results that the SCANet achieves desirable results in
terms of robustness and fusion performance in the fusion of
unregistered LR-HSI and HR-MSI.

VI. CONCLUSION

Considering the actual situation of remote sensing applica-
tions, we propose an SCANet for the first time based on the
principle of stereo vision to solve the problem of image detail
information loss due to the misregistration of LR-HSI and
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HR-MSI. To avoid model complexity and improve operational
efficiency, we design a simple and stackable SCFBlock for
abstract feature extraction of the image. Moreover, the CCFSA
performs bidirectional cross-vision interaction by combining
the complementary features generated by the SCFBlock and
fuses the interaction information with the input image fea-
tures to achieve full utilization of horizontal and vertical
contextual information of LR-HSI and HR-MSI. The fusion
effects on different datasets and different settings, such as
registration error directions, model sizes, and module effects,
are evaluated in the experiments. The experimental results
show that for the fusion of unregistered LR-HSI and HR-MSI,
SCANet surpasses the current deep learning models, achieving
state-of-the-art performance. In the future, we will design
efficient and reliable model structures for more complex cases
(e.g., squeezed, stretched, and so on) to solve the problem of
HSI and MSI fusion due to the lack of strict registration.
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